PHYS-C0252 — Quantum Mechanics

Final examination

Tuesday, 14 December, 09:00-12.00
Instructions

e Your answers should be legible and appropriately numbered.

e Your answers should contain relevant intermediate steps and explanatlons for the
calculations.

e No calculators, cheat sheets or other materials are allowed.

e Return the exam paper when you are finished.

1. The Hamiltonian of a quantum harmonic oscillator in terms of the position operator
Z and momentum operator p is

as

(a) (2 points) Show that [P,Q] = — o=
(b) (2 points) Let us define ¥ =

R

T
h .2
a4

~iI>(

SI

(Q+ iP),
= ——(Q —iP).

Calculate a'a in terms of P and Q.

(c) (1 point) Show that the Hamiltonian may be written as
H=hw(a'a+1/2).

(d) (I point) Using the commutation relation [a,a'] = 1, show that the Hamilto-
nian may be written as

H = hw (aat - 1/2).
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2. A quantum system described by the Hamiltonian H is initially in the state

[¥) =N [V2I61) + VIa) +10s) + o)

where N € R, |¢,) are the orthonormal eigenstates of energy such that A |én)

nEol¢n), and Ey is a real-valued constant with units of energy.

(a) (2 points) Find a value for N such that [¢) is normalized to unity.

(b) (2 points) Let the energy of |¢) be measured. Give all possible measurement
results and calculate their corresponding probabilities. Assume that the mea-

surement is ideal, i.e., no measurement €ITOrs occur.

(c) (2 points) Consider an operator X , the action of which on |6n) (n=1,2,3,4)
is defined by X |#n) = (n+ 2)xo|¢n), where zq is a real-valued scalar. Suppose
that a measurement of the energy of the above-defined [¢) yields 4E,. As-
sume that immedi?.tely afterwards, we ideally measure the physical quantity
corresponding to X. What is the value for the quantity obtained in the latter

measurement?

3. Consider a qubit described by the Hamiltonian f = e(—1]0)(1| + i|1)(0[), where
{l0),]1)} form an orthonormal basis of the Hilbert space and ¢ is a real-valued

constant with units of energy.

(a) (1 point) Show that the Hamiltonian is Hermitian.

(b) (1 point) Write the matrix representation of the Hamiltonian in the basis

{10),11)}.

(¢) (2 points) Find the eigenenergies Ey and E, of [ and the corresponding eigen-

states.

(d) (2 points) Suppose that initially (at ¢ = 0) the system is in the state |(0)) =

|1). Find the state |4(t)) at an arbitrary time ¢.
4. Briefly define the following terms:

(a) (1 point) Unitary quantum evolution

(b) (1 point) Complete basis for an arbitrary Hilbert space
(c) (1 point) Commutation relation of operators

(d) (1 point) Qubit

(e) (2 points) Heisenberg uncertainty principle
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5 A po.int-l_ike particle with mass m is moving freely inside a one-dimensional box with
two infinite walls at = 0 and 2 = a and zero potential between the walls.

(a) (4 points).Solve the wave functions of the eigenstates {¥n(z)}oZ, and the
eigenenergies { E,}22 | of the particle.

(b) (1 point) Let the energy of the ground state be £\ = 38 eV. Find the energy
of the particle in its first excited state Es.

(¢) (1 point) Suppose that the particle is in the ground state. Let us suddenly

double the size of the box, i.e., the right wall is moved instantaneously from
z = a to z = 2a. The quantum state of the particle does not change during

the change. Find the probability that a subsequent measureme
of the particle will yield the ground-state energy of the new box.

Hint:

nt of the energy

in((a —b)z) _si v
/sin(aar:)sin(bx)d$=S_nz(((;z’_%)_Ln2(f(:ll_-—-:--$2

Bonus: (0.5 points) How long did it take for you to finish the exam?
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