PHYS-C0252 - Quantum Mechanics

Final examination

Wednesday 07 December 2022, 13:00-16:00

Instructions

- Your answers should be legible and appropriately numbered.
- Your answers should contain relevant intermediate steps and explanations for the calculations.
- No calculators, cheat sheets or other materials are allowed.
- Return the exam paper when you are finished.

1. Briefly define the following terms:
(a) (1 point) Quantum state of a physical system
(b) (1 point) Eigenstate
(c) (1 point) Hamiltonian operator of a physical system
(d) (1 point) Bloch sphere
(e) (2 points) The difference between fermions and bosons. Give at least two examples.
2. A quantum system described by a Hamiltonian \hat{H} is initially in the state

$$
|\psi\rangle=N\left[\left|\phi_{1}\right\rangle+\left|\phi_{2}\right\rangle+\frac{1}{\sqrt{2}}(1+\mathrm{i})\left|\phi_{3}\right\rangle+\sqrt{5}\left|\phi_{4}\right\rangle\right],
$$

where $\left|\phi_{n}\right\rangle$ are the eigenstates of energy such that $\hat{H}\left|\phi_{n}\right\rangle=n E_{0}\left|\phi_{n}\right\rangle, E_{0}$ has units of energy, and $N \in \mathbb{R}$.
(a) (1.5 points) Find a suitable scalar N such that $|\psi\rangle$ is normalized.
(b) (1.5 points) Let the energy of $|\psi\rangle$ be measured. Give all possible measurement results and their corresponding probabilities. Assume that the measurement is ideal, i.e., no measurement errors occur.
(c) (1.5 points) What is the expectation value of the energy when the system is in the state $|\psi\rangle$? Is it a possible measurement result if the energy is measured?
(d) (1.5 points) Consider an operator \hat{X}, the action of which on $\left|\phi_{n}\right\rangle(n=1,2,3,4)$ is defined by $\hat{X}\left|\phi_{n}\right\rangle=(n+2) x_{0}\left|\phi_{n}\right\rangle$, where x_{0} is a real-valued scalar. Suppose that a measurement of the energy of the above-defined $|\psi\rangle$ yields $3 E_{0}$. Assume that immediately afterwards, we ideally measure the physical quantity corresponding to \hat{X}. What is the value for the quantity obtained in the latter measurement?
3. Consider a complete orthonormal basis $\{|n\rangle\}_{n=0}^{\infty}$ for a Hilbert space \mathcal{H} and define operators $\hat{a}|n\rangle=\sqrt{n}|n-1\rangle$ and $\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle$ such that $\hat{a}|0\rangle=0$. Let us consider the Hamiltonian

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\mathrm{i}} \hat{a}+1 / 2\right)
$$

which in fact is the Hamiltonian of a quantum harmonic oscillator with eigenstates $\{|n\rangle\}_{n=0}^{\infty}$.
(a) (1 point) What are the eigenenergies ϵ_{n} of \hat{H} in terms of $\hbar \omega$?
(b) (1 point) Show that $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$. (Hint: Operate on an arbitrary eigenstate $|n\rangle$.)
(c) (1 point) Show that $[\hat{N}, \hat{a}]=-\hat{a}$, where $\hat{N}=\hat{a}^{\mathrm{f}} \hat{a}$ is the number operator.
(d) (1 point) Show that $\left[\hat{N}, \hat{a}^{\dagger}\right]=\hat{a}^{\dagger}$.
(e) (2 points) Show that $|n\rangle=(n!)^{-1 / 2}\left(a^{\dagger}\right)^{n}|0\rangle$.
4. Consider a system described by the Hamiltonian $\hat{H}=\epsilon(|0\rangle\langle 1|+|1\rangle\langle 0|)$, where $\{|0\rangle,|1\rangle\}$ form an orthonormal basis of the considered Hilbert space and ϵ is a realvalued constant with the dimension of energy.
(a) (2 points) Express the eigenenergies E_{k} and eigenvalues $\left|\psi_{k}\right\rangle$ of \hat{H} in terms of $\epsilon,|0\rangle$ and $|1\rangle$. Write the Hamiltonian in the form

$$
\hat{H}=\sum_{k} E_{k}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

(b) (2 points) Write the matrix representation $U(t)$ of the time evolution operator $U(t)$ in the eigenbasis $\left\{\left|\psi_{k}\right\rangle\right\}$ using its matrix elements

$$
U_{k, j}(t):=\left\langle\psi_{k}\right| \hat{U}(t)\left|\psi_{j}\right\rangle=\left\langle\psi_{k}\right| \mathrm{e}^{-\mathrm{i} \hat{H} t / \hbar}\left|\psi_{j}\right\rangle,
$$

and write $\hat{U}(t)$ in the form

$$
\hat{U}(t)=\sum_{k, j} U_{k, j}(t)\left|\psi_{k}\right\rangle\left\langle\psi_{j}\right| .
$$

Express the result again in terms of $\epsilon,|0\rangle$ and $|1\rangle$. Hint: $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
(c) (2 points) Suppose that at $t=0$, the system is in the state $|\psi(0)\rangle=|1\rangle$. Find the state $|\psi(t)\rangle$ at an arbitrary time t.
5. Consider a particle with wave function $\psi(x)$ and mass m in the step potential

$$
V(x)= \begin{cases}0, & x<0 \\ V_{0}, & x>0\end{cases}
$$

where $V_{0}>0$ has units of energy.
(a) (2 points) Write the stationary Schrödinger equation for a particle in this potential and write down the appropriate boundary conditions when the energy of the particle E satisfies $E>V_{0}$.
(b) (2 points) Show that in the opposite case, when $E<V_{0}$, the solutions to the stationary Schrödinger equation are of the form

$$
\psi(x)= \begin{cases}A_{I} \mathrm{e}^{\mathrm{i} k x}+A_{R} \mathrm{e}^{-\mathrm{i} k x}, & x<0 \\ B \mathrm{e}^{-k_{0} x}, & x>0\end{cases}
$$

Express k and k_{0} in terms of m, E and V_{0}.
(c) (2 points) Using the appropriate boundary conditions, calculate the reflection coefficient $R=\left|A_{R} / A_{I}\right|^{2}$ for waves incoming from $x<0$, when $E<V_{0}$.

Bonus: (0.5 points) How long did it take for you to finish the exam?

