PHYS-C0252 — Quantum Mechanics

Final examination

Wednesday 07 December 2022, 13:00-16:00

Instructions

- Your answers should be legible and appropriately numbered.
- Your answers should contain relevant intermediate steps and explanations for the calculations.
- No calculators, cheat sheets or other materials are allowed.
- Return the exam paper when you are finished.
- 1. Briefly define the following terms:
 - (a) (1 point) Quantum state of a physical system
 - (b) (1 point) Eigenstate
 - (c) (1 point) Hamiltonian operator of a physical system
 - (d) (1 point) Bloch sphere
 - (e) (2 points) The difference between fermions and bosons. Give at least two examples.
- 2. A quantum system described by a Hamiltonian \hat{H} is initially in the state

$$|\psi\rangle = N\left[|\phi_1\rangle + |\phi_2\rangle + \frac{1}{\sqrt{2}}\left(1+\mathrm{i}\right)|\phi_3\rangle + \sqrt{5}|\phi_4\rangle\right],$$

where $|\phi_n\rangle$ are the eigenstates of energy such that $\hat{H}|\phi_n\rangle = nE_0|\phi_n\rangle$, E_0 has units of energy, and $N \in \mathbb{R}$.

- (a) (1.5 points) Find a suitable scalar N such that $|\psi\rangle$ is normalized.
- (b) (1.5 points) Let the energy of |ψ⟩ be measured. Give all possible measurement results and their corresponding probabilities. Assume that the measurement is ideal, i.e., no measurement errors occur.
- (c) (1.5 points) What is the expectation value of the energy when the system is in the state $|\psi\rangle$? Is it a possible measurement result if the energy is measured?

Page 1 of 3

- (d) (1.5 points) Consider an operator \hat{X} , the action of which on $|\phi_n\rangle$ (n = 1, 2, 3, 4) is defined by $\hat{X}|\phi_n\rangle = (n+2)x_0|\phi_n\rangle$, where x_0 is a real-valued scalar. Suppose that a measurement of the energy of the above-defined $|\psi\rangle$ yields $3E_0$. Assume that immediately afterwards, we ideally measure the physical quantity corresponding to \hat{X} . What is the value for the quantity obtained in the latter measurement?
- 3. Consider a complete orthonormal basis $\{|n\rangle\}_{n=0}^{\infty}$ for a Hilbert space \mathcal{H} and define operators $\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$ and $\hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$ such that $\hat{a} |0\rangle = 0$. Let us consider the Hamiltonian

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + 1/2 \right),$$

which in fact is the Hamiltonian of a quantum harmonic oscillator with eigenstates $\{|n\}_{n=0}^{\infty}$.

- (a) (1 point) What are the eigenenergies ϵ_n of \hat{H} in terms of $\hbar\omega$?
- (b) (1 point) Show that $[\hat{a}, \hat{a}^{\dagger}] = 1$. (Hint: Operate on an arbitrary eigenstate $|n\rangle$.)
- (c) (1 point) Show that $[\hat{N}, \hat{a}] = -\hat{a}$, where $\hat{N} = \hat{a}^{\dagger}\hat{a}$ is the number operator.
- (d) (1 point) Show that $[\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$.
- (e) (2 points) Show that $|n\rangle = (n!)^{-1/2} (a^{\dagger})^n |0\rangle$.
- 4. Consider a system described by the Hamiltonian $\hat{H} = \epsilon(|0\rangle\langle 1| + |1\rangle\langle 0|)$, where $\{|0\rangle, |1\rangle\}$ form an orthonormal basis of the considered Hilbert space and ϵ is a real-valued constant with the dimension of energy.
 - (a) (2 points) Express the eigenenergies E_k and eigenvalues $|\psi_k\rangle$ of \hat{H} in terms of ϵ , $|0\rangle$ and $|1\rangle$. Write the Hamiltonian in the form

$$\hat{H} = \sum_{k} E_k |\psi_k\rangle \langle \psi_k| \, .$$

(b) (2 points) Write the matrix representation U(t) of the time evolution operator $\hat{U}(t)$ in the eigenbasis $\{|\psi_k\rangle\}$ using its matrix elements

$$U_{k,j}(t) := \langle \psi_k | \hat{U}(t) | \psi_j \rangle = \langle \psi_k | e^{-i\hat{H}t/\hbar} | \psi_j \rangle,$$

and write $\hat{U}(t)$ in the form

$$\hat{U}(t) = \sum_{k,j} U_{k,j}(t) |\psi_k\rangle \langle \psi_j|.$$

Express the result again in terms of ϵ , $|0\rangle$ and $|1\rangle$. Hint: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

(c) (2 points) Suppose that at t = 0, the system is in the state $|\psi(0)\rangle = |1\rangle$. Find the state $|\psi(t)\rangle$ at an arbitrary time t.

Page 2 of 3

5. Consider a particle with wave function $\psi(x)$ and mass m in the step potential

$$V(x) = \begin{cases} 0, & x < 0, \\ V_0, & x > 0, \end{cases}$$

where $V_0 > 0$ has units of energy.

- (a) (2 points) Write the stationary Schrödinger equation for a particle in this potential and write down the appropriate boundary conditions when the energy of the particle E satisfies $E > V_0$.
- (b) (2 points) Show that in the opposite case, when $E < V_0$, the solutions to the stationary Schrödinger equation are of the form

$$\psi(x) = \begin{cases} A_I e^{ikx} + A_R e^{-ikx}, & x < 0, \\ B e^{-k_0 x}, & x > 0. \end{cases}$$

Express k and k_0 in terms of m, E and V_0 .

(c) (2 points) Using the appropriate boundary conditions, calculate the reflection coefficient $R = |A_R/A_I|^2$ for waves incoming from x < 0, when $E < V_0$.

Bonus: (0.5 points) How long did it take for you to finish the exam?