
- 1. Explain the following concepts, use drawings and equations when adequate.
 - a) Describe the stator and rotor constructions and the principle of operation of a separately excessed section. (Hint: field and armature, forces on conductors and torque, induced voltage, commutator and brushes, etc...) (3p.)
 - b) Explain the three running modes of operation of an induction machine by drawing the Torque-Speed (or Slip) curve and give the range of the slip for each mode of operation (3 p.)
 - c) Draw the complete single-phase equivalent circuit of a transformer and explain what each of its component represents (3 p.)
 - d) Explain the static stability limits of a synchronous machine. What are these limits? Why they are important? What happens if any of them exceeds? (hint: use drawing in the PQ plan) (3 p.)
- 2. The magnetic relay in the figure has a coil of 500 turns currying a current $I_{\rm dc}=4,19~{\rm A}$. The mean core path length is $I_{\rm c}=360~{\rm mm}$ and the air gap is $I_{\rm g}=1,5~{\rm mm}$. The relative permeability of the core is $\mu_c=1250~{\rm and}$ its cross-section is $A_c=100~{\rm mm}^2$. Neglect flux fringing in the air gaps.
 - a) Draw the equivalent magnetic circuit of the relay and calculate its parameters, (MMF and reluctances) (2 p.)
 - b) Calculate the flux density in the air gap (use the circuit in (a)) (2 p.)
 - c) Calculate the total force acting on the moving part (2 p.).

Air gap

IEEE-recommended equivalent

circuit of an induction machine.

3. A three phases, 250 kW, 460 V, 60 Hz, eight poles, star-connected induction machine is connected to a 460 V infinite bus and is running as a generator at a slip s=-2,5%. The equivalent circuit of the machine, in the figure, has the following parameters

 $R_1 = 0.015\Omega; \quad R_2' = 0.035\Omega;$

 $X_1 = 0.145\Omega$; $X_2' = 0.145\Omega$; $X_m = 6.5\Omega$

- a) Determine the speed of the rotor (2 p.)
- b) Determine the power delivered to the infinite bus and the power factor (2 p.)
- c) Determine the efficiency of the generator. The rotational and core losses are 3 kW (2 p.)
- 4. A three-phase, 14 kV, 10 MVA, 60 Hz, two poles, 0,85 PF lagging, star-connected synchronous generator has $X_s = 20\Omega$ per phase and $R_s = 2\Omega$ per phase. The generator is connected to an infinite bus and is running at rated condition (rated current and complex power).
 - a) Determine the current phasor (2p)
 - b) Determine the excitation voltage E_f and load angle (2 p.)
 - c) Draw the phasor diagram (2 p.)

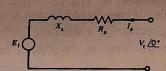
ELEC-E8407 Electromechanics, examination 7.12.2022, 12.30-15.30, TU1.

Evaluation:

Grade	Lower limit	Upper limit
0	0	13
1	14	16
2	17	19
3	20	22
4	23	26
5	27	30

Some useful formulas and drawings:

Magnetic reluctance: $\Re = \frac{l}{\mu A}$


Magnetomotive force: F = Ni

Force pressure: $F_{\rm m} = \frac{B_{\rm g}^2}{2\mu_0}$

Speed of AC-machine: $n = \frac{120f}{p}$ (p is the number of poles!)

Slip of induction machine: $s = \frac{n_s - n}{n_s}$

Equivalent circuit of a synchronous motor:

Convention: lagging reactive power positive -- > phase angle of current, with respect to the voltage phasor is negative

AC active power: $P = 3V_{ph}I_{ph}\cos\phi = \sqrt{3}VI\cos\phi$

Magnetic permeability: $\mu = \mu_r \mu_0$; $\mu_0 = 4\pi 10^{-7} \ Hm^{-1}$