CS-E4650 Methods of Data Mining EXAM 14.12.2022

Jorma Laaksonen

These equipment are allowed and needed in the exam:

- pencil and eraser
- non-programmable calculator capable of roots, trigonometrics & logarithms

No other material (including phones, laptops, books, printouts or notes) is allowed.

Each task shall be written in separate sheets to ease and speed up the checking process!

- 1. Explain briefly, with 30-50 words, a mathematical definition and/or an illustration, the following concepts or abbreviations:
 - a) similarity vs. distance vs. metric
 - b) swap randomization
 - c) closeness centrality
 - d) PageRank
 - e) tf-idf vector

2.	Data items t_1 ,	t_{\circ}	have	the fol	lowing	r dieta	nce m	otrise	
	1,	1	2	3	Y	5		T.	8
	ty	0	0.33	0.89	0.75	0.75	0.57	0.89	0.897
	2	0.33	0	1.00	0.57	0.57	0.57	0.75	0.75
	3	0.89	1.00	0	0.89	1.00	0.89	0.75	0.75
	4	0.75	0.57	0.89	0	0.33	0.75	0.75	0.57
	5	0.75	0.57	1.00		0	0.75	0.75	0.57
	6	0.57	0.57	0.89	0.75	0.75	0	0.89	0.89
	7	0.89	0.75	0.75	0.75	0.75	0.89	0	0.33
	8	0.89	0.75	0.75	0.57	0.57	0.89	0.33	0

- a) Study clustering tendency based on the distance matrix. What threshold value would you choose for discriminating between intra- and inter-cluster distances?
- b) Apply agglomerative hierarchical clustering algorithm with single linkage metric on the data items. Draw an easily comprehensible dendrogram as the final result by re-arranging the data items appropriately.
- c) How do the shapes of the clusters generally differ between clusterting results with complete versus single linkage metric?
- d) How could you perform K-means clustering based on the same distance matrix? If not, explain why.
- e) Name and describe two clustering validation indices.

3. Consider the transaction database in the table below:

tid	items				
1	a, c, d, e				
2	a, d, e, f				
3	b, c, d, e, f				
4	b, d, e, f				
5	b, e, f				
6	c, d, e				
7	c, e, f				
8	d, e, f				

- a) Show the transactions in the form of a vertical "tid list" for all one-item sets.
- b) Apply the Apriori algorithm on the data with minimum frequency $\min_{\rm fr}=3/8$ and show all candidate and frequent itemsets in an enumeration tree.
- c) Explain how one can prune itemset $\{c, d, f\}$ without frequency counting.
- d) List all 1) maximal, 2) closed, and 3) 0-free frequent itemsets.
- e) Calculate confidence (or precision) ϕ , leverage δ , and lift γ values of the following candidate rules: 1) $\{d\} \rightarrow \{f\}$, 2) $\{b\} \rightarrow \{f\}$, and 3) $\{b,e\} \rightarrow \{f\}$. Based on those values, explain which ones of the candidate rules have potential to express positive statistical dependence. How would you proceed in finding significant association rules?
- 4. Two chemical compounds are presented in the figure below:

- a) Explain the concept and implementation of Maximum Common Subgraph (MCS) and apply it to G_1 and G_2 .
- b) Calculate value of max-normalized distance $Mdist(\mathbf{G}_1, \mathbf{G}_2) = 1 \frac{|MCS(\mathbf{G}_1, \mathbf{G}_2)|}{\max\{|\mathbf{G}_1|, |\mathbf{G}_2|\}}$ and discuss its properties.
- c) Explain the concept and implementation of Graph Edit Distance (GED) and apply it with equal unit costs to modify first G_1 to G_2 and then G_2 to G_1 . Compare the results.
- d) Use G_1 and G_2 as a database and identify and list all connected subgraphs of sizes i = 1, 2, 3, 4 and their frequencies.
- e) How could you use frequent subgraphs for implementing a distance measure between two graphs?