Aalto University, School of Science S. Sipila
Department of Applied Physics

PHYS-E0460 Introduction to Reactor Physics, 2nd mid-term exam 15 Dec 2022

You may use an unprogrammed calculator and the document "Mathematical Tools for Reac-
tor Physics”. You are welcome to answer in English, Finnish or Swedish.

1. Give a concise explanation of the following:
a) point kinetics b) dollar (3) c) void coefficient a,
d) Fourier’s law ) hot channel factor F' f) diversity.

2. A uranium-fuelled thermal reactor is operating at a constant thermal power Py = 200
MW. Control rods are pulled outwards from the core, inserting a positive reactivity
p = 0.0005. Calculate the time required to reach the power P = 300 MW neglecting
reactivity feedback effects. Take into account the prompt jump and compare the result
to the approximation where the power is assumed to increase at stable period from its
initial value. For simplicity, assume just one effective delayed neutron precursor group
with a decay constant A = 0.1 s™!. For thermal reactors, the prompt neutron lifetime
l, = 0.0001 s, and for 2°U B = 0.0065. Power density is directly proportional to flux,
which during the prompt jump behaves as

= —yr, _ PBéro o yr — K
o1 = droe +1—(1—ﬁ)km(1 e "), where T \(l—ﬂ)km—ll’
The stable period can be solved from the reactivity equation
ABkeo _
(l—ﬁ)koo'i'm—l—wlp.

3. The thermal absorption cross section of the reactor poison *’Gd is 7. = 2.5 x
10° barn. '7Gd is stable and born in the 8~ decay chain: - - - 2 157Sm 2 157Ey £,
157Gd(stable). %7Sm has a half-life of 8 min and its yield is 6 X 105 atoms per 235U
fission. 1*Eu has a half-life of 15.2 h and its yield directly from fission is very small.
Let’s assume a pure 23°U fuel so that p =€ =1, v = 2.42 and 8 = 0.0065.

a) Derive the expression for the reactivity effect of a reactor poison (hint: only fuel
utilization f is affected in the multiplication factor k).

b) What is the reactivity effect of 1"Gd in equilibrium, if the average thermal flux of
the reactor is ¢r = 2.5 x 101 cm—2571?

c) If the reactor has been running for a long time at the mentioned average flux, what
is the maximum reactivity effect of %’Gd after shutdown?

4. Consider a coolant channel of the centermost fuel rod in a PWR core of height H.
The density of the coolant is p, its specific heat is ¢, and its flow velocity is v. The



cross-section areas of the channel and the fuel in the rod are A, and A;. The coolant
inlet temperature is Ty, the convective heat transfer coefficient from rod surface to
coolant is h, and the axial distribution of power is of cosine form. Determine the bulk
temperature of the coolant T;(2) and the outer surface temperature T,(2) of the rod
cladding as functions of the axial coordinate z (along the height of the core).

5. Describe the goals and means of fuel management.



Mathematical Tools for Reactor Physics

1 Delta function

Definition

d(r—rg)=0, if r#rg
_ 1, if rgeVv
/Vé(r—rg)dV—{ 0, if rogV

Consequence
_ _ _J f(ro), if rpeV
[ 8 = o)1) dv = 1) [ 6 ~ro)av = { 0 i ey
¢ in different coordinates
e Rectangular coordinates: §(r — rg) = 6(z — z0)d(y — y0)d(z — 20)
e Cylinder coordinates: d(r —rg) = %5(7‘ —10)d(p — p0)d(z — 20)

e Spherical coordinates: §(r —rg) = mé(r —10)0(p — 0)d(0 — 6p)

Singular sources in terms of the delta function
e Point source at ro: S(r) = Sé(r — rg)
e Plane symmetry
— Plane source at z = zg: S(r) = Sé(z — o)
e Cylinder symmetry

— Thin, hollow cylindrical source of radius ro: S(r) = 5%6(7' - 10)

— Line source on z axis: S(r) = 5-4(r)
e Spherical symmetry
— Thin, hollow spherical source of radius ro: S(r) = ‘Fsr,&('r —Tp)

— Point source at the origin: S(r) = IFST-IJ(T)



2 Bessel functions

J, and Y, are Bessel functions, I,, and K, modifioied Bessel functions. J,
and Y, have infinite number of zeros, I,, increases monotonically, and K,
decreases monotonically. At the origin and infinity the functions behave as
follows:

Jo(0)=1, J,(0)=0 (n#£0), alcin})Yn(z) = —00
Iy(0) =1, I,(0)=0 (n#0), lin})Kn(z) = 00
zli_)ngo I.(z) = oo, Jim K,(z) =0.
For derivatives:
d
d—da: (z"Kn(z)) = —z"Kn-1(z), for others I (" Zn(z)) = 2" Zn-1(x)

Ii(z) = I,(z), for others Zy(z) = —2Z;(z)
In(@)Kn-1(2) + In-1(2) Kn(z) = %

3 Integral theorems

f F.dS = / (V-F)dv (Gauss theorem)

v \4

]{ F.dl= / (VxF)-dS (Stokes theorem)
as S

4 Coordinate systems and differential operators

Rectangular coordinates (z, y, 2)
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Cylindrical coordinates (r, ¢, z)

I =TCOosyp
y=rsinyp
z2=2

r=/x2 + y?
¢ = arctan ¥
2=z

€z = €.CoSp — €, Sinyp
ey = e siny + e, Ccosy
e; =e,

e = e;Cosp + eysiny
e, = —€;siny + €, cos ¢
e, =e¢e;
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Spherical coordinates (r, 6, ¢)

T = rsinfcos p
y =rsinfsingp
z=rcosf L

r=z?+y?+2?
0 = arccos ——%——
Vz2+y?+22

@ = arctan ¥

e; = e, sinf cos ¢ + eg cos 0 cos p — e, sin p
e, = e, sinfsin p + egcosfsinp + e, cos ¢
e, =e,.cosf —egsinb

e, = egsinfcosp + ey sinfsing + e, cos §
ey = ez cosfcosp + ey cosfsinyp —e,sinf
€, = —€z5inp + €, cos
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