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1. One arch of the cycloid can be given as z(t) = a(t — sint), \\\

y(t) = a(l — cost),0 < t < 2m,a > 0. Calculate the area of

. _ . N ' T
the region above the z-axis but under one arch of the cycloid. Ta 0 |
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2. When a tank is emptied by gravity through a hole in the bottom, the

height y(t) of the liquid satisfies the separable ordinary differential equa- Y R
tion (ODE) A(y) - dy/dt = —k - \/y(t), where A(y) is the cross-sectional 4 —
area of the tank at height vy and k is a constant.
A tank in the shape of a right circular cone with height H and radius
R is standing on its tip. When it is filled with water, it gets emptied
in time T through a hole at the tip. Set up the differential equation for
the height and determine y(t) for t € [0s,T]. Determine also the time it
takes for the height of the water to sink from H to H/2 (when only 1/8
of the water remains).

3. For rectangular coordinates z,y and polar coordinates r, 6 in the plane
we have £ = rcosf,y = rsinf = tanf = y/z (when z # 0) and
r? =12 + 42 Py

9z 90 _ 9y, or :
Show that &5 - 57 = 5 - & &
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4. Let F(z,y,2) = Tt + T + 2%k. Calculate fcﬁ e d7, where C is the closed curve

starting at (z,v, 2) = (1,0,0), going along the helix 7(t) = cost7+ sint7+ tk to (1,0,27)
and then back to (1,0,0) along a straight line.

5. V= ’z*a% + j‘ai + 75535. V is not an ordinary vector, so rules that hold for ordinary vectors
need not hold for V.
a) For vectors @, b € R® we have that be (@ x b) = 0. Give a vector field G(z,y, 2) of class
CY(R?) such that Ge (Vx G)=Ge (curl(é)) # 0 (not identically equal to 0; it is OK if
it is = 0 at some points). Calculate also G e (V x G) at some point where G o (VxG) #0.
b) For vectors @, b € R® we have that G e (@x 5) = 0. Show that for vector fields A (z,v,2)
of class C?(R3) we have V o (V x H) = div(curl(H)) = 0. (Sometimes a rule for ordinary
vectors appears to have a corresponding rule involving V.)

Useful (7) formulas:
cos?t +sin’t =1, cos?t = (1 + cos(2t))/2, sin®t = (1 — cos(2t))/2,
sin(2t) = 2sintcost, cos(2t) = cos’t —sin’t = 2cos?t — 1 = 1 — 2sin?t.



