Aalto University School of Science Mat-1.1631 Mathematics 3-I Alestalo

Exam 17.2.2014.

Please fill in all the required information to each exam paper.

No calculators are allowed.

1. The function $f: \mathbf{R} \to \mathbf{R}$ is 2π -periodic, and f(x) = x for $-\pi \le x \le \pi$.

a) Sketch the graph of f on the interval $-3\pi \le x \le 3\pi$.

- b) Calculate the Fourier coefficients of f and write down the first three non-zero terms from the series.
- 2. Let u(x,y) = 2x 3y + 4 for $(x,y) \in \mathbb{R}^2$. Find a function v so that the function f(x+iy) = u(x,y) + iv(x,y) is analytic in the whole complex plane \mathbb{C} , and give a formula for f(z) in terms of the variable z = x + iy.
- 3. Find all complex solutions of the equation $z^3 + 8 = 0$. You may give the answers in the polar form.
- 4. a) Give a short explanation to the formula

$$\cos x = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$

for x real.

- b) Calculate the value of the complex number $\ln(3-3i)$.
- 5. Calculate the integrals

$$\int_C \frac{dz}{z}$$
 and $\int_C \frac{dz}{\overline{z}}$

where C is the unit circle with the positive orientation.

6. Using the residue integration method, calculate the integral

$$\int_C \frac{e^{iz}}{9+z^2} \, dz,$$

where C is the closed semi-circle in the upper half-plane with radius equal to 5 and center at the origin.

Some useful formulas on the backside!

Formulas related to Fourier series

Let $f: \mathbf{R} \to \mathbf{R}$ be piecewise continuous and 2L-periodic. Then

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right),$$

where

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx$$
 and $b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$

for $n \geq 1$, and

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) \ dx.$$