Helsinki University of Technology Mat-1.462 Mathematics II

M. Mataich

Examination. 15/November/2004

Please write on sheet on separate lines:

- 1) course title, date
- 2)student number + letter, IN BLOCK LETTERS surname underlined, all given names
- 3) signature
 - 1. Use the definition of the limit for multivariable function to prove that

$$\lim_{(x,y,z)\to (0,0,0)} e^{\sqrt{x^2+y^2+z^2}} = 1$$

- 2. A certain gas satisfies the law $PV=T-\frac{4P}{T^2}$ where P= pressure, V= volume, and T= temperature.
 - (a) Calculate $\frac{\partial T}{\partial P}$ and $\frac{\partial T}{\partial V}$ at the point where P=V=1 and T=2.
 - (b) If measurements of P and V yield the values $P=1\pm0.0001$ and $V=1\pm0.002$, find the approximate error in the calculated value of T.
- 4. Solve the initial value problem

$$\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

5. Show that

$$\int_{(1,2)}^{(3,4)} (6xy^2 - y^3) \, dx + (6x^2y - 3xy^2) \, dy$$

is independent of the path of integration and evaluate it.

6. Use Green's Theorem to evaluate the integral.

$$\oint_C (2xy - x^2)dx + (x + y^2)dy$$

assume that the curve C is oriented counterclockwise, where C is the closed curve of the region bounded by $y=x^2$ and $y=\sqrt{x}$.