- $\begin{gathered}\text { Matrix Algebra } \\ \text { MS-A0001 } \\ \text { Hakula }\end{gathered}$

Exam, 24.2.2023

Every question carries an equal weight, similarly every part of a question carries an equal weight, unless otherwise specified.

Problem 1 A commutator of matrices A and B is defined as

$$
C=[A, B]=A B-B A .
$$

a) Discuss, why the definition is meaningful if and only if both A and B are square matrices of equal size. b) Evaluate the commutator, when

$$
A=\left(\begin{array}{cc}
1 & 0 \\
1 & -1
\end{array}\right), \quad B=\left(\begin{array}{cc}
2 & 1 \\
-2 & 0
\end{array}\right)
$$

Problem 2 Using only the definition of the matrix product and the transpose, show that when the product is defined, then

$$
(A B)^{T}=B^{T} A^{T} .
$$

Problem 3 Find the $L U$-decomposition of

$$
A=\left(\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right)
$$

Problem 4 Find all solutions of $A x=b$, where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & -1 & \alpha \\
-1 & 2 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
1 \\
2 \\
\beta
\end{array}\right)
$$

$\alpha, \beta \in \mathbb{R}$.
PROBLEM 5 Show that every orthogonal 2×2-matrix can be expressed in either one of the two forms:

$$
\left(\begin{array}{rr}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{rr}
\cos \varphi & \sin \varphi \\
\sin \varphi & -\cos \varphi
\end{array}\right) .
$$

Problem 6 (a) Let A be an invertible square matrix such that (λ, x) is an eigenpair, $\lambda \neq 0, x \neq 0$. Show that $(1 / \lambda, x)$ is an eigenpair of A^{-1}.
(b) Let the matrix A have exactly two eigenvalues $\lambda_{1}=1, \lambda_{2}=1 / 2$, and the corresponding eigenvectors $v_{1}=(1,1)^{T}, v_{2}=(-1,1)^{T}$. Find the limit $\lim _{k \rightarrow \infty} A^{k}$.

