CS-E5755 Nonlinear Dynamics and Chaos

Exam 3.9.2020
Calculator is allowed, no other material.

Problem 1. (6 p) Analyse the following system. Sketch the vector fields as r is varied. Determine the critical value where the bifurcation occurs. Sketch the bifurcation diagram and determine which bifurcation is in question.

$$
\dot{x}=r x+4 x^{3}
$$

Problem 2. (6 p) Analyse the following system and sketch a plausible phase portrait.

$$
\begin{aligned}
\dot{x} & =x(2-x-y) \\
\dot{y} & =x-y
\end{aligned}
$$

Problem 3.

(a) (3 p) Is the following system reversible? ("Yes" or "no" is not enough. Justification is required.)

$$
\begin{aligned}
\dot{x} & =y\left(1-x^{2}\right) \\
\dot{y} & =1-y^{2}
\end{aligned}
$$

(b) (3 p) In your own words, explain what it means that the value of the fractional dimension of the Lorenz attractor is between 2 and 3 and in fact close to 2 .

Problem 4.

(a) (3p) Find the value/values of r at which the logistic map has a superstable fixed point

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right) .
$$

Here, $0 \leq x_{n} \leq 1 \forall n \in \mathbb{Z}$, and $0 \leq r \leq 4$.
(b) (3 p) Find the fixed points and define their stabilities for the cubic map $x_{n+1}=3 x_{n}-x_{n}^{3}$. Set $x_{n}=2$, iterate, and see what happens. Name what you found.

