Aalto University, School of Science
Department of Computer Science

CS-A1140 Data structures and algorithms Autumn 2023
Exam December 4th, 2023, at 17:00-20:00

Use of calculators and material is not allowed in the exam.

You can answer the questions in English, Finnish or Swedish.
Your answers should be clear, well-structured and concise.
Note: the questions continue on the other side of the paper!

1. First, (i) define the concept of “a stable sorting ger sortx(a: Array[Double]): Unit =

algorithm”. Rt 1

Then, consider the Scala program on the right Wh‘,': l;:m:;\lf:g::i?o

and answer the following questions. Remem- yar. j = ;

ber to justify answers (iii)-(vi) (each with at "(;,' .04, <10 @
most few sentences!). Use the ©- and O- =5y

notations when needed, and denote the length T(i; 1 o

of the argument array a by n.
(ii) Which well-known sorting algorithm does the program implement?
(iii) Is the algorithm stable?
(iv) What is the worst-case running time of the program?
(v) What is the best-case running time of the program?
(vi) How much extra memory does the algorithm use?
(vii) In what kind of situations should one use this sorting algorithm in practise?
12 points

2. As discussed in the round 3 of the course, maximum priority queues can be imple-
mented with the binary max-heap data structure. (i) Define the properties that a
binary tree must satisfy in order it to be a binary max-heap. (ii) Do the properties
hold for the binary trees (a) and (b) below? Justify your answer briefly. In the fig-
ures, as well as in the course material, the elements are integers drawn inside the
nodes of the tree and the priority ordering is the usual less-or-equal ordering <. (iii)
Describe the efficient method, discussed in the round, for storing binary max-heaps in
computer memory and illustrate it for the binary max-heap (c) below.

Recall that inserting a new element, and removing an element with the highest priority,
can be done in time O(log n), where n is the number of elements currently in the binary
max-heap. (iv) Illustrate the steps the insertion algorithm makes when the element
18 is inserted in the max-heap (c) above. (v) After this, illustrate the steps done when
removing an element with the highest priority from the max-heap just obtained.

10 points

I I A N

s

7. At what time did you finish answering the exam questions?

3. (1) Suppose we use a hash table for storing a set of 32-bit integers. Let the size m
of the hash table be 7 in the beginning. Use the hash function h(x) = x mod m and
open addressing with linear probing as the collision resolution method. Describe the
contents of the hash table, after each step, when the integers 15, 9, 8, and 22 are first
inserted in this order in the table, and 9 is then removed from the table.

Also answer the following questions about hashing and hash tables. (ii) What do
the terms “collision” and “load factor” mean? (iii) What does “rehashing” mean and
when/why should one perform it? (iv) Why the hash function h(x) = x mod m for
integers may not be the best choice when the size m of the hash table is a power of
two (that is, m = 2* for some positive integer k)? 9 points

. (1) Give pseudo-code, or a structured compact verbal description, of the breadth-first
search algorithm for finding shortest paths from a source vertex to all other vertices in
a directed graph. (ii) What data structures are needed to implement the algorithm?

Consider the graph on the right.

(iii) Mlustrate its adjacency list representation.

(iv) Explain/illustrate how the breadth-first search algorithm
works on the graph when the source vertex is a.

(v) Define the concept of a “strongly connected component” for directed graphs. (vi)
What are the strongly connected components of the graph shown above? 12 points

. Take the following computational problem: Given a directed acyclic graph G = (V, E)
and two vertices s (the source) and t (the target) in it. How many different paths
there are from s to ¢ in the graph?

(i) Describe a dynamic programming algorithm for solving the problem. Hint: denote,
for each vertex v, the number of paths from v to t by a(v) and develop a recursive
definition for the value a(v). Your algorithm should run in time O(|V|+|E||V|), where
the latter term |V| is for handling the possibly quite large values a(v).

(ii) Apply your algorithm to the graph on
the right when the source vertex is a and
the target vertex is j. It is enough to give (s}
the values a(v) for each vertex v in the
order they are evaluated or updated.

8 points

. Consider the Scala program on the right' def parX[A](a:Array[(A], f: A => Int) =
The par.parallel(code1,code2) construction is as require(a.nonEmpty)

5 > ‘) def | t ¢ Int, /] g2 =
in the course material, executing codel and ["\1er *taL: I, ends In0 Int
code2 in parallel and returning their return |f(-("-"))
- - . eise

values. (i) Describe with one or two sentences, val mid = start + (end — start)/2
what kind of value the program computes. val (1, r) = par.parallel(

e inner(start, mid),
What are (ii) the span and (iii) the work of the inner (mid+1, end)

program in the O-notation? Denote the length } £
of the argument array by n and justify each inner(0, a.length-1)
answer with at most few sentences.

(iv) How could the program be improved to work faster in practise? 8 points

1 points

e NG AWM~

s = ©
S8 =0

