A5 $\begin{gathered}\text { Matrix Algebra } \\ \text { MS-A0001 } \\ \text { Brzuska/Karanko/Hakula }\end{gathered}$
 Course Exam, 5.12.2023

This exam is for those participating on continuous assessment. Every question carries an equal weight, similarly every part of a question carries an equal weight, unless otherwise specified. There are four problems on this exam. Calculators are not permitted.

Problem 1 Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad b=\left(\begin{array}{l}
6 \\
3 \\
1
\end{array}\right)
$$

(a) Show that the columns of A are linearly independent. (b) Show that $x=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)^{T}$ is a solution of $A x=b$.
Problem 2 Solve the linear system of equations $A x=b$ using some suitable $L U$-factorization, where

$$
A=\left(\begin{array}{lll}
0 & 2 & 1 \\
2 & 3 & 1 \\
1 & 1 & 4
\end{array}\right), \quad b=\left(\begin{array}{l}
3 \\
6 \\
6
\end{array}\right) .
$$

Problem 3 Let

$$
A=\left(\begin{array}{ccc}
1 & 1 & -1 \\
2 & -3 & 1
\end{array}\right), \quad b=\binom{1}{\alpha}
$$

where $\alpha \in \mathbb{R}$. Find all possible solutions (if any) of $A x=b$.
Problem 4 (4p) Find a real and symmetric matrix A, whose eigenvalues are $\lambda_{1}=1, \lambda_{2}=1 / 2$ and the corresponding eigenvectors are

$$
x_{1}=\binom{3}{3}, \quad x_{2}=\binom{2}{-2}
$$

(2p) Find the limit

$$
\lim _{k \rightarrow \infty} A^{k}
$$

