Instructions: Answer as many questions as possible. Each subquestion (labelled with letters) carries equal weight, and is worth a maximum mark of 6 points.

1

It is only permitted to bring to the exam room basic writing material and a scientific calculator.

1.

$$A = \begin{bmatrix} 0 & 1\\ 1/\sqrt{5} & 0\\ -2/\sqrt{5} & 0 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 7\\ 2\pi\\ \pi \end{bmatrix}$$

- (a) Say whether the following claim is true or false: $A = A \cdot I_2$ is a QR decomposition of A. Justify your answer.
- (b) Using part (a) or otherwise, describe the set of solutions to the least squares problem min_{x∈R²} ||Ax − b||₂.

2. Let

$$B = \begin{bmatrix} y - 1 & 0 & 1 \\ 1 & y + 1 & 1 \\ -1 & 0 & y + 1 \end{bmatrix}$$

where $y \in \mathbb{R}$ is a parameter.

- (a) Prove that the eigenvalues of B are y and y + 1, and compute an eigenvector associated with each of them.
- (b) Say whether the following claim is true or false: The algebraic multiplicity of the eigenvalue y is equal to the geometric multiplicity of the eigenvalue y. Justify your answer.
- (c) Say for which values of y the linear system Bx = c has a unique solution for every possible right hand side c ∈ ℝ³.
- 3. The Frobenius norm of a matrix $C \in \mathbb{R}^{m \times n}$ is defined as $||C||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |C_{ij}|^2}$. Hint: In solving the next questions, you can freely use the following property. For every pair of orthogonal matrices $Q \in \mathbb{R}^{m \times m}$, $Z \in \mathbb{R}^{n \times n}$ and every matrix $C \in \mathbb{R}^{m \times n}$ it holds $||C||_F = ||QCZ||_F$.
 - (a) Prove that, if $m \ge n$ and the singular values of C are $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n$, then

$$||C||_F = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_n^2} = \sqrt{\sum_{i=1}^n \sigma_i^2}.$$

- (b) Using the statement of item (a) or otherwise, prove that if m ≥ n then every C ∈ ℝ^{m×n} satisfies both ||C||₂ ≤ ||C||_F and ||C||_F ≤ √n ||C||₂. Moreover, give an example of a matrix A ∈ ℝ^{2×2} such that ||A||_F = ||A||₂, and an example of a matrix B ∈ ℝ^{2×2} such that ||B||_F = √2 ||B||₂.
- (c) Let $U \in \mathbb{R}^{n \times n}$. Using the statements of items (a) and (b) or otherwise, prove that $||U||_2 = ||U||_F$ if and only if dim R(U) = 1.