Instructions: Answer as many questions as possible. Each subquestion (labelled with letters) carries equal weight, and is worth a maximum mark of 6 points.
It is only permitted to bring to the exam room basic writing material and a scientific calculator.
1.

$$
A=\left[\begin{array}{cc}
0 & 1 \\
1 / \sqrt{5} & 0 \\
-2 / \sqrt{5} & 0
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{c}
7 \\
2 \pi \\
\pi
\end{array}\right]
$$

(a) Say whether the following claim is true or false: $A=A \cdot I_{2}$ is a QR decomposition of A. Justify your answer.
(b) Using part (a) or otherwise, describe the set of solutions to the least squares problem $\min _{\mathbf{x} \in \mathbb{R}^{2}}\|A \mathbf{x}-\mathbf{b}\|_{2}$.
2. Let

$$
B=\left[\begin{array}{ccc}
y-1 & 0 & 1 \\
1 & y+1 & 1 \\
-1 & 0 & y+1
\end{array}\right]
$$

where $y \in \mathbb{R}$ is a parameter.
(a) Prove that the eigenvalues of B are y and $y+1$, and compute an eigenvector associated with each of them.
(b) Say whether the following claim is true or false: The algebraic multiplicity of the eigenvalue y is equal to the geometric multiplicity of the eigenvalue y. Justify your answer.
(c) Say for which values of y the linear system $B \mathbf{x}=\mathbf{c}$ has a unique solution for every possible right hand side $\mathbf{c} \in \mathbb{R}^{3}$.
3. The Frobenius norm of a matrix $C \in \mathbb{R}^{m \times n}$ is defined as $\|C\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n}\left|C_{i j}\right|^{2}}$. Hint: In solving the next questions, you can freely use the following property. For every pair of orthogonal matrices $Q \in \mathbb{R}^{m \times m}, Z \in \mathbb{R}^{n \times n}$ and every matrix $C \in \mathbb{R}^{m \times n}$ it holds $\|C\|_{F}=\|Q C Z\|_{F}$.
(a) Prove that, if $m \geq n$ and the singular values of C are $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$, then

$$
\|C\|_{F}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}}=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}
$$

(b) Using the statement of item (a) or otherwise, prove that if $m \geq n$ then every $C \in \mathbb{R}^{m \times n}$ satisfies both $\|C\|_{2} \leq\|C\|_{F}$ and $\|C\|_{F} \leq \sqrt{n}\|C\|_{2}$. Moreover, give an example of a matrix $A \in \mathbb{R}^{2 \times 2}$ such that $\|A\|_{F}=\|A\|_{2}$, and an example of a matrix $B \in \mathbb{R}^{2 \times 2}$ such that $\|B\|_{F}=\sqrt{2}\|B\|_{2}$.
(c) Let $U \in \mathbb{R}^{n \times n}$. Using the statements of items (a) and (b) or otherwise, prove that $\|U\|_{2}=\|U\|_{F}$ if and only if $\operatorname{dim} R(U)=1$.

