MS-E1461 Hilbert spaces
 (Aalto University, Turunen / Vavilov) Examination on Monday 16.10.2023, at 9:00-12:00

Points also for good effort! No literature, no calculators, etc. If you refer to any results in the course, please name them.

1. Let v_{1}, v_{2} be two linearly independent vectors in a Hilbert space.
(a) Find an orthonormal basis for vector subspace $Z=\operatorname{span}\left(\left\{v_{1}, v_{2}\right\}\right)$.
(b) Find the formulas for the orthogonal projection P onto Z, and for the orthogonal projection Q onto the orthogonal complement of Z.
(c) Sketch also a picture (or pictures) how these vectors and projections look like in case of a 3 -dimensional real Hilbert space.
2. Let $L^{2}([0,1])$ denote Lebesgue's space of absolutely square-integrable functions (No need to go into details of measure and integration theory here). Let $e_{k}(x):=\mathrm{e}^{\mathrm{i} 2 \pi x k}$.
(a) Explain what we mean when saying that $\left(e_{k}\right)_{k \in \mathbb{Z}}$ is an orthonormal basis. What is the Fourier series representation of $u \in L^{2}([0,1])$ then?
(b) Using the orthonormal basis in (a), construct a countable orthonormal basis for $L^{2}(\mathbb{R})$, which is Lebesgue's space of the absolutely squareintegrable functions on the real line.
3. Formulate and prove the Fréchet-Riesz Representation Theorem for bounded linear functionals in Hilbert spaces.
4. Let $H:=\ell^{2}\left(\mathbb{Z}^{+}\right)$, i.e. Hilbert space of the absolutely square-summable functions $u: \mathbb{Z}^{+} \rightarrow \mathbb{C}$, and let

$$
\begin{equation*}
A u(x):=\sum_{y=1}^{\infty} 2^{-(x+y)} u(y) \tag{1}
\end{equation*}
$$

(a) Show that (1) defines a compact linear operator $A: H \rightarrow H$. Show that A is self-adjoint. Find the operator norm $\|A\|$.
(b) Diagonalize operator A.

