Aalto University

Björn Ivarsson, 050-4067 832
Exam, Monday, December 4, 2023, 09:00-12:00
Complex Analysis, MS-C1300
Motivate your answers. Only giving answers gives no points. No calculators or books are allowed. Good luck!
(1) (a) Find the Taylor series of

$$
f(z)=\frac{1}{(2+z)^{2}}
$$

around $z_{0}=0$. Determine the radius of convergence ρ for the series.
(2p)
(b) Find the Taylor series of

$$
f(z)=\frac{z}{2 z^{2}-3 z+1}
$$

around $z_{0}=0$. Determine the radius of convergence ρ for the series. (Hint: Partial fractions help.)
(c) Find the Laurent series of

$$
f(z)=\frac{e^{z}}{(2 z-i \pi)^{2}}
$$

$$
\begin{equation*}
\text { in }\left\{z \in \mathbb{C} ; 0<\left|z-\frac{i \pi}{2}\right|\right\} . \tag{2p}
\end{equation*}
$$

(2) Let $\gamma(t)=e^{i t}+1$, for $0 \leq t \leq 2 \pi$. Calculate:
(a)

$$
\begin{equation*}
\int_{\gamma} \frac{e^{z}+z}{z+1} d z \tag{2p}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{\gamma} \frac{e^{z}+z}{z-1} d z \tag{2p}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\int_{\gamma} \frac{e^{z}+z}{(2 z-1)^{2}} d z \tag{2p}
\end{equation*}
$$

(3) Assume that $a>0$ is a strictly positive real number. Let

$$
f(z)=\frac{e^{i z}}{z^{2}+a^{2}}
$$

(a) Find the poles of f and determine their order. Calculate the residues of f at those poles.
(b) Calculate

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x \tag{3p}
\end{equation*}
$$

(4) Let $\Delta(0,1)=\{z \in \mathbb{C}:|z|<1\}$ and $f: \Delta(0,1) \rightarrow \mathbb{C}$ be analytic. Assume that $f(0)=0$ and $|f(z)| \leq M$ for all $z \in \Delta(0,1)$. Show that $|f(z)| \leq M|z|$ for all $z \in \Delta(0,1)$. (Hint: Study the function

$$
g(z)=\left\{\begin{array}{l}
f(z) / z \text { when } z \neq 0 \\
f^{\prime}(0) \text { when } z=0
\end{array}\right.
$$

Is this function analytic? How big can $|g(z)|$ be on $\Delta(0,1)$? Use this information to prove the result. This result is called Schwarz's lemma.)
(6p)

Useful formulas

- Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

- Cauchy's Integral Formula

$$
n\left(\gamma, z_{0}\right) f^{(k)}\left(z_{0}\right)=\frac{k!}{2 \pi i} \int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{k+1}} d z
$$

- Residue for a pole of order m

$$
\operatorname{Res}\left(z_{0}, f\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]
$$

- Some Taylor series
$\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$, when $|z|<1$
$e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$, when $z \in \mathbb{C}$
$\cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}$, when $z \in \mathbb{C}$
$\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}$, when $z \in \mathbb{C}$

