A"
 Partial Differential Equations Course exam 11.12.2023

Aalto University

Course exam (50\%)
No calculators, notes or other equipment
Solve all five problems. Each is worth 6 points.
Some formulas are given in the end of the exam paper.

Problem 1: Let $f \in C^{2}\left(\mathbb{R}^{2}\right)$ and $a, b \in \mathbb{R}$. Show that $u(x, y)=f(a x+b y)$ is a solution to the Monge-Ampère equation $u_{x x} u_{y y}-u_{x y}^{2}=0$.
Problem 2: Let $\Omega=\left\{x \in \mathbb{R}^{2},:|x|=1\right\}$ be the one-dimensional unit ring. Consider the heat equation $u_{t}=\Delta u$ on $\Omega \times(0, T)$ with the initial temperature given by a function $g \in C(\Omega)$. How can this problem be solved by separation of variables? A brief list of the main steps of the argument is enough.
Problem 3: Let $\Omega \subset \mathbb{R}^{n}$ be a bounded and connected set with smooth boundary and $f, g \in C(\partial \Omega)$. Consider the Dirichlet problem

$$
\begin{cases}\Delta u=f & \text { in } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

Show that this problems has at most one solution $u \in C^{2}(\Omega)$ for example by using Green's identities. (If you use comparison principle, you should prove it as well.)

Problem 4: Give solution formulas to the problems below in terms of the fundamental solution of the heat equation Φ and the initial data. It is enough to give the explicit formulas without any proofs.
(a) The Cauchy problem

$$
\begin{cases}u_{t}-\Delta u=0 & (x, t) \in \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=g(x) & x \in \mathbb{R}^{n}\end{cases}
$$

where $g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
(b) The nonhomogeneous Cauchy problem with zero boundary values

$$
\left\{\begin{array}{l}
u_{t}-\Delta u=f \text { in } \mathbb{R}^{n} \times(0, \infty), \\
u=0 \text { in } \mathbb{R}^{n} \times\{t=0\}
\end{array}\right.
$$

where $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$.
(c) The nonhomogeneous Cauchy problem with general boundary values

$$
\begin{cases}u_{t}-\Delta u=f \quad \text { in } & \mathbb{R}^{n} \times(0, \infty) \\ u(x, 0)=g(x) & x \in \mathbb{R}^{n}\end{cases}
$$

where $f \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times(0, \infty)\right)$ and $g \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$.
Problem 5: Consider the initial and boundary value problem on the first quadrant

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0 \quad \text { in } \quad \mathbb{R}_{+} \times(0, \infty), \\
u(x, 0)=\sin (2 x), \quad u_{t}(x, 0)=\sin (x) \\
u=0 \quad \text { on } \quad\{x=0\} \times(0, \infty)
\end{array} \quad x \in \mathbb{R}_{+},\right.
$$

Solve this problem by using the method of odd reflection and d'Alembert's formula.

Some formulas that might be useful:

$$
\begin{gathered}
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}, \quad 0<r<\infty, \quad-\pi \leq \theta<\pi . \\
\int_{\Omega} \nabla u \cdot \nabla v d x=-\int_{\Omega} u \Delta v d x+\int_{\partial \Omega} \frac{\partial v}{\partial \nu} u d S . \\
\Phi(x, t)= \begin{cases}\frac{1}{(4 \pi t)^{\frac{n}{2}}} e^{-\frac{|x|^{2}}{4 t}}, \quad x \in \mathbb{R}^{n}, \quad t>0, \\
0, \quad x \in \mathbb{R}^{n}, \quad t \leq 0 .\end{cases} \\
u(x, t)=\frac{1}{2}(g(x+t)+g(x-t))+\frac{1}{2} \int_{x-t}^{x+t} h(y) d y . \\
v(x, t)=\frac{1}{|\partial B(x, t)|} \int_{\partial B(x, t)}(t h(y)+g(y)+\nabla g(y) \cdot(y-x)) d S(y) . \\
u(x, t)=\int_{0}^{t} u(x, t ; s) d s, \quad x \in \mathbb{R}^{n}, \quad t>0,
\end{gathered}
$$

where $u(x, t ; s)$, with $0<s<t$, is a solution the problem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(x, t ; s)-\Delta u(x, t ; s)=0, \quad x \in \mathbb{R}^{n}, \quad t>s, \\
u(x, s ; s)=f(x, s), \quad x \in \mathbb{R}^{n} .
\end{array}\right.
$$

