
ELEC-E8101 Digital and Optimal Control

Final Exam (05.12.2023) – Solution

1. Consider the linear, time-invariant, discrete-time state-space system

x[k + 1] =

(
0 a1
1 a2

)
x[k] +

(
0
1

)
u[k]

y[k] =
(
1 0

)
x[k].

(a) Derive the characteristic polynomial of the system matrix Φ! [0.5p]

(b) Use Jury’s stability criterion to determine the stability conditions! [1p]

(c) Assume a2 = 1. Illustrate graphically for which choices of a1 the system is stable![1.25p]

(d) Derive the controllability matrix and check for which choices of a1, a2 the system is
reachable! [0.5p]

(e) Derive a pole placement controller that places both poles of the system at 0.5! Write
the controller gains as functions of a1 and a2. [1.25p]

(f) Could we have also placed the poles at different locations or are we restricted in where
to locate the poles? Why? [0.25p]

(g) Derive the observability matrix and check for which choices of a1, a2 the system is ob-
servable! [0.5p]

(h) Derive a deadbeat observer for the system! Write the observer gains as functions of
a1 and a2. (The design with delay is sufficient, i.e., no need to derive the Luenberger
observer.) [1.25p]

(i) What is the main characteristic of a deadbeat controller or observer? [0.25p]

Solution. (a) The characteristic polynomial is derived by computing the eigenvalues of Φ:

χ(λ) = det(λI − Φ)

= det

(
λ −a1
−1 λ− a2

)
= λ2 − a2λ− a1.

b) The derivations for Jury’s stability criterion are shown below.

a0 a1 a2 1 −a2 −a1
a2 a1 a0 −a1 −a2 1 b2 = −a1

1 = −a1
a10 a11 1− (a1)

2 −a2(1 + a1)

a11 a10 −a2(1 + a1) 1− (a1)
2 b1 = −a2(1+a1)

1−(a1)2 = −a2
1−a1

a00 1− (a1)
2 − (a2)2(1+a1)

1−a1
Thus, the stability conditions are

1− (a1)
2 > 0

1− (a1)
2 − (a2)

2(1 + a1)

1− a1
> 0.



c) Factoring out the first inequality, we find

(1− a1)(1 + a1) > 0.

From this inequality, we can already conclude that −1 < a1 < 1. For the second
inequality, we find

1− (a1)
2 − (1 + a1)

1− a1
=

(1− a1)2(1 + a1)− (1 + a1)

1− a1

=
(1 + a1)[(1− a1)2 − 1]

1− a1

=
(1 + a1)((a1)

2 − 2a1)

1− a1
.

If (1− a1)(1 + a1) > 0, then also 1+a1
1−a1 > 0. Thus, the two conditions are equivalent, and

we are left with (a1)
2− 2a1 > 0 or (a1)

2 > 2a1. This reduces the admissible region even
further to −1 < a1 < 0 From this, we can draw the plot:
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d) The controllability matrix is

Wc =
(
Γ ΦΓ

)
=

(
0 a1
1 a2

)
.

For the system to be reachable, the controllability matrix must have full rank. This is the
case if a1 6= 0.

e) We first derive the characteristic polynomial of the closed-loop system

χ(λ) = det(λI − (Φ− ΓL))

= det

(
λ −a1

−1 + `1 λ− a2 + `2

)
= λ2 + (`2 − a2)λ− a1 + a1`1.

The desired polynomial given the poles is

χ(λ) = (λ− 0.5)2 = λ2 − λ+ 0.25.

Thus, we find
`2 = a2 − 1

and

a1`1 − a1 = 0.25

`1 =
0.25 + a1

a1
.



f) Given a1 6= 0, the system is reachable. Thus, we can place the poles at arbitrary locations.
Poles with an absolute value larger than one would be unstable, but also this would not
prevent us from placing them there.

g) The observability matrix is

Wo =

(
C
CΦ

)
=

(
1 0
0 a1

)
.

For the system to be observable, the observability matrix must have full rank. This is the
case if a1 6= 0.

h) We first derive the characteristic polynomial

χ(λ) = det(λI − (Φ−KC))

= det

(
λ+ k1 −a1
k2 − 1 λ− a2

)
= (λ+ k1)(λ− a2) + a1(k2 − 1)

= λ2 + (k1 − a2)λ+ a1(k2 − 1)− a2k1.

Since we consider a deadbeat controller, the desired characteristic polynomial is

χ(λ) = λ2.

Thus, we find
k1 = a2

and

a1(k2 − 1)− a2k1 = 0

k2 =
a1 + a2k1

a1

=
a1 + (a2)

2

a1

= 1 +
(a2)

2

a1
.

i) A deadbeat controller brings the system to the desired state in at most n time-steps, where
n is the dimensionality of the state.



2. Consider the scalar system

x[k + 1] = x[k] + u[k] + v[k]

y[k] = x[k] + w[k].

The noise signals v, w are white, uncorrelated, and have covariance r1 and r2, respectively.
We use the standard quadratic cost and call the cost associated with the state qx and the cost
associated with the inputs qu (since r is already used for the covariance), where qx, qu > 0.

(a) Derive the steady-state covariance P∞ and the steady-state Kalman gain K∞ for the
system starting from the general formulas for K[k] and P [k]!
Hint: for a steady-state equation, we must have P [k + 1] = P [k]. [1.25p]

(b) What can you say about the mean and the variance of the prediction error when using
the Kalman filter? (No calculation needed, just general properties.) [0.5p]

(c) Compute the steady-state LQR for the system, i.e., determine the gain L!
Hint: for the steady-state LQR gain, we have [1p]

L = (ΓTSΓ + qu)−1ΓTSΦ

where
S = ΦT[S − SΓ(ΓTSΓ + qu)−1ΓTS]Φ + qx.

(d) Assume

L =

qx
2 +

√
q2x
4 + qxqu

qx
2 +

√
q2x
4 + qxqu + qu

.

Show that the equation only depends on the ratio α = qx
qu

(i.e., rewrite the equation such
that α is the only remaining variable)! What is an interpretation of this result? [0.75p]

(e) Assume we use the steady-state Kalman gain

K∞ =

r1
2 +

√
r21
4 + r1r2

r1
2 +

√
r21
4 + r1r2 + r2

to estimate the state and the LQR gain from Part (d) for state-feedback. Determine the
poles of the closed-loop system as a function of r1, r2, qx, and qu (if you solved (d), you
can use the formulation with α instead of qx and qu). [0.75p]

(f) ∗ Bonus question: Provide an interpretation for how α influences the location of the
closed-loop poles. For this, think about what happens for α → 0 and α → ∞ (or
qu � qx, qx � qu). [1p∗]

(g) Assume we want to add the constraints |x| < 10, |u| < 4 to the optimization problem.
Could we still use an LQG approach as above? If yes, how would we incorporate the
constraints (no need to write equations, only outline the idea)? If not, why not and
what would be an alternative? [0.5p]

(h) For analyzing stability, we could use Lyapunov’s method. Is the existence of a valid
Lyapunov function a necessary or sufficient (or both) criterion for closed-loop stability?
Does it make a difference whether the system is linear or nonlinear? [0.5p]



Solution. (a) We have a scalar system for which Φ = 2, Γ = C. Thus, the equation for the
Kalman filter reduces to

K[k] =
P [k]

P [k] + r2

with

P [k + 1] = P [k] + r1 −
P [k]2

P [k] + r2
.

We now need P∞, which we get by setting

P∞ = P∞ + r1 −
P 2
∞

P∞ + r2
.

Solving for P∞, we find

0 = −P 2
∞ + r1P∞ + r1r2.

We get the two solutions of the quadratic equation through

p1,2 =
−r1 ±

√
r21 + 4r1r2
−2

.

Since the covariance must be positive, we know that only the positive solution counts.
We can then derive the Kalman gain as

K∞ =
P∞

P∞ + r2

=

r1
2 +

√
r21
4 + r1r2

r1
2 +

√
r21
4 + r1r2 + r2

.

b) The Kalman filter prediction has zero-mean, i.e., is unbiased, and has minimum variance.

c) From the given equations, we find that

L =
S

S + qu
,

where

S = S − S2

S + qu
+ qx.

From this, we find

0 = −S2 + Sqx + quqx.

This is the exact same structure as in Part a) before, so we can directly find

L =

qx
2 +

√
q2x
4 + qxqu

qx
2 +

√
q2x
2 + qxqu + qu

.



d) All we have to do is divide numerator and denominator by qu:

L =

qx
2 +

√
q2x
4 + qxqu

qx
2 +

√
q2x
2 + qxqu + qu

=

qx
2qu

+
√

q2x
4q2u

+ qx
qu

qx
2qu

+
√

q2x
4q2u

+ qx
qu

+ 1

=

α
2 +

√
α2

4 + α

α
2 +

√
α2

4 + α+ 1
.

The result shows that the absolute values of qu, and qx are not important for the controller
gain, only how large they are relative to each other matters.

e) Due to the separation principle, we can find the poles independent of each other at
Φ−KC and Φ− ΓL.
Starting with the observer, we have

Φ−KC = 1−
β
2 +

√
β2

4 + β

β
2 +

√
β2

4 + β + 1
=

1

β
2 +

√
β2

4 + β + 1

and, for the controller,

Φ− ΓL = 1−
α
2 +

√
α2

4 + α

α
2 +

√
α2

4 + α+ 1
=

1

α
2 +

√
α2

4 + α+ 1
.

f)∗ For α → 0, we have poles at 1, i.e., poles that are marginally stable. For α → ∞, the
poles are at the origin. If we mainly care about bringing the state to zero (high α), we
end up with a deadbeat controller that brings the system to the origin as fast as possible.

g) The LQG cannot handle constraints. Thus, for this task, we need a different controller
type, for instance, a model predictive controller.

h) Finding a valid Lyapunov function for a given system is, in general, only a sufficient
condition: if we find a valid Lyapunov function, then the system is stable. If we do not
find a Lyapunov function, then the system might still be stable, as there are infinitely
many potential Lyapunov functions. For linear systems, we can always use the quadratic
function. In this case, the criterion is necessary and sufficient.


