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1. Show that the limit lim ) (0,0) ;ﬂ% does not exist. R

2. For rectangular coordinates z,y and polar coordinates r,8 we have
z=r-cosf,y=r-5inf = tanf = y/z (when z # 0) and r? = 22 4-3>.
dr dy __ z
Show that . 2k = 22. 92, |
3. The halfball W = {(z,y, z) € R3z?+y?+2% < R%, z > 0} has volume
V= j—”;-i Its density at the point (z,y, 2) € W is given by é(z,y, z) =
b0+ &, SO bpin = 6(z,y,0) = O(kg/m®) and dpmez = 6(0,0,R) = do.
Calculate the mass m of W. _
(Hint: The average density 4 = m/V satisfies dpin < 6 < Spmaz.)

4. Calculate the area of the part of the parabolic cylinder z = 1 — 32,
which is bounded by the zy-plane, the yz-plane and the plane z = 2y.
(Hint: The area of the surface can not be less than the area of its
projection onto a (coordinate) plane.)

5. Use the method of Lagrange multipliers to determine the shortest distance from the
parabola y = £ - (z + 2) to the point (z¢, yo) = (—2,2).

Useful (?) formulas:

(a+b)2 = a® + 2ab+ b, (a + b)® = a® + 3a%b + 3ab® + .

cos?t +sint =1, cos’t = (1 + cos(2t))/2, sin?t = {1 — cos(2t))/2,
sin(2t) = 2sintcost, cos(2t) = cos?t —sin’t = 2cos?t — 1 = 1 — 2sin’t.



