MS-C1080 EXAM ALGEBRAN PERUSRAKENTEET INTRODUCTION TO ABSTRACT ALGEBRA 25.04.2017 (3h)

Camilla Hollanti, Ferdinand Blomqvist

In all the assignments, a ring is assumed to have (by definition) an identity element: $1_R \in R$. You may answer in either Finnish or English. No calculators or tables are allowed.

- 1. Define/explain the following concepts:
 - a) (2p) Group and quotient group.
 - b) (2p) Ring and ideal.
 - c) (3p) Ring homomorphism. Kernel and image (of a ring homomorphism).
- 2. (6p) Let $C_{\infty} = \langle c \rangle$ be an infinite cyclic group. Show that if n > 0, then

$$C_{\infty}/\langle c^n\rangle \simeq C_n$$
,

where C_n is a finite cyclic group with n elements.

- 3. a) (3p) Define [G:H], the index of a subgroup H of G in G.
 - b) (3p) State and prove Lagrange's index theorem.
- 4. (6p) Prove that a subgroup of a group can be the kernel of a group homomorphism if and only if the subgroup is normal.
- 5. Let $\mathbb{Z}[i] = \{n + im \mid n, m \in \mathbb{Z}\}$ be the ring of Gaussian integers $(i = \sqrt{-1})$ and let $a ib \in \mathbb{Z}[i]$ so that $\gcd(a, b) = 1$.
 - a) (5p) Show that

$$\mathbb{Z}[i]/\langle a-ib\rangle \simeq \mathbb{Z}/(a^2+b^2)\mathbb{Z}.$$

(Hint: Consider the canonical projection $\pi: \mathbb{Z} \to \mathbb{Z}[i]/\langle a-ib\rangle$, $\pi(n) = n + \langle a-ib\rangle$. You can assume that this map is surjective).

b) (2p) When is the quotient $\mathbb{Z}[i]/(a-ib)$ a field?

[Extra] You can earn two bonus points for proving that the canonical projection in part a) is surjective.

Suomenkielinen tentti kääntöpuolella!