Exam question 1

Heat release rate per unit area of polymeric materials

Explain: Difference of thermoplastics and thermosets in fire behaviour

Explain: Fire point

Explain: Upper and lower flammability limits as safety criteria

Explain what is meant by fire resistance of structures and what are the characteristics.

CIV-E3050 23.2.2024

2. Combustion chemistry

(25 p)

a) Fuel gas with chemical formula C_5H_{12} and molar mass of 72.15 g/mol combusts in air. Write the **reaction formula** and derive its **coefficients** for incomplete combustion with carbon monoxide yield of 1.94 % (mass basis). Assume CO's molar mass = 28 g/mol. (9 p)

b) Calculate the heat of combustion for the reaction (8 p).

Use the known heats of formation:

$$\Delta H_{f,CO2}^{298} = -393.5 \text{ kJ/mol}$$
 $\Delta H_{f,H2O}^{298} = -241.8 \text{ kJ/mol}$ $\Delta H_{f,CO}^{298} = -110.5 \text{ kJ/mol}$ $\Delta H_{f,C5H12}^{298} = -147.0 \text{ kJ/mol}$

c) Calculate the **adiabatic flame temperature** at initial temperature of 20 °C using the reaction and heat from tasks a and b, respectively. **List the assumptions** made. (8 p)

Specific heat capacities at 1000 K	
$c_{\rm p}$ (CO) = 33.2 J/mol.K	$c_{\rm p}$ (CO ₂) = 54.3 J/mol.K
$c_{\rm p}$ (H ₂ O) = 41.2 J/mol.K	$c_{\rm p}(N_2) = 32.7 \text{J/mol.K}$
$c_{\rm p}$ (O ₂) = 34.9 J/mol.K	$c_p (C_5 H_{12}) = 120 \text{ J/mol.K}$

CIV-E3050 23.2.2024

3. Thermal radiation from pool fire

A pool of crude oil (diameter = 8 m) burns steadily.

- a) Calculate the radiative emission power (MW). Present and justify input data. (10 p)
 - b) Calculate radiative heat flux to a vertical, ground-level target at 15 m distance from the pool centre, using a point source method (5 p)
 - c) Calculate radiative heat flux as above, but assuming a cylindrical emitter with base diameter equal to the pool, and cylinder height equal to flame height.
 (5 p)
 - d) Assess the effect of the heat flux on humans and building materials? (5 p)

CIV-E3050 23.2.2024

4. FDS simulation (25 p)

Fire ignites in the middle of a $4 \times 4 \times 2.5$ (height) m³ room with two open doors (1 × 2 (height) m² doors to ambient at opposite walls. Fire source is a 1×1 m² ethanol pool fire with ultra-fast growth rate (t^2 -fire) and maximum HRR of 1 MW. Soot yield of 1 %.

All other solid surfaces are made of 13 mm thick plywood ($\rho = 450 \text{ kg m}^{-3}$, $c = 1500 \text{ J kg}^{-1}\text{K}^{-1}$, $k = 0.2 \text{ Wm}^{-1}\text{K}^{-1}$, $\epsilon = 1.0$) with insulated backing.

Simulate the fire using FDS from 0 to 300 s. Enclose the input file.

- a) Show a plot of HRR. (10 p)
- b) Plot the plywood surface temperature in the middle of the ceiling. Assuming a charring temperature of 300 °C, when would the ceiling start to char? Is the middle point the first point of the ceiling to char? (10 p)
- c) How would you describe the spatial resolution of your simulation? (5 p)