
Aalto University Exam T01 / KT
Department of Mathematics and Systems Analysis 16.4.2021
MS-C1541 — Metric spaces, 2021/III K Kytölä & D Adame-Carrillo

This is the exam sheet for both the the final exam (T01) and for the retake of the
course exam (KT) of MS-C1541 Metric spaces. The grading is based on either

• 100% final exam (T01);
• 50% course exam (KT) + 50% exercises (during the period III course).

You can attempt both options, and the one leading to the more favorable grade is
taken into account.

Depending on the option above, you should solve the following problems:

• Final exam (T01): Solve all six problems.
• Course exam (KT): Choose any five of the six problems.

(If you solve all problems, the best five are taken into consideration for the course
completion option based on course exam + exercises.)

Problems



Problem 1. (6 pts)
Consider the functions

d1 : R× R→ [0,∞) d1(x, y) =
√
|x− y| for x, y ∈ R,

d2 : R× R→ [0,∞) d2(x, y) = |x− y|2 for x, y ∈ R.

Which one of these is a metric on the set R of real numbers? Prove all conditions
of a metric for it. For the other one, show concretely that some required property
of a metric fails.

Solution. Recall that a metric on a set X is a function d : X × X → [0,∞)
satisfying

∀x, y ∈ X : d(x, y) = d(y, x),(M-s)

∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z),(M-∆)

∀x, y ∈ X : d(x, y) = 0 if and only if x = y.(M-0)

In this problem, we consider metrics on the set X = R of real numbers.

We claim that d1 above is a metric on R. Since it is a function with the right
domain and codomain, d1 : R×R→ [0,∞), it suffices to verify the conditions (M-s),
(M-∆), and (M-0).

(M-s): Let x, y ∈ R. We then have |x− y| = |y − x|, so also

d1(x, y) =
√
|x− y| =

√
|y − x| = d1(y, x).

(M-∆): Let x, y, z ∈ R. Calculate first the square of both sides of the inequality,

d1(x, z)
2 =

(√
|x− z|

)2
= |x− z|,

and(
d1(x, y) + d1(y, z)

)2
=
(√
|x− y|+

√
|y − z|

)2
=
(√
|x− y|

)2
+ 2

√
|x− y|

√
|y − z|+

(√
|y − z|

)2
= |x− y|+ 2

√
|x− y|

√
|y − z|+ |y − z|.

Leaving out the non-negative term 2
√
|x− y|

√
|y − z| from the last expression can

only make it smaller, so we have
(
d1(x, y) + d1(y, z)

)2 ≥ |x − y| + |y − z|. By the
triangle inequality of the absolute value we have |x − z| ≤ |x − y| + |y − z|, so we

conclude
(
d1(x, y) + d1(y, z)

)2 ≥ |x − z| = d1(x, z)
2. Noting that the expressions

inside the squares here are non-negative, we conclude that taking the (non-negative)
square roots preserves the inequalities (since a 7→

√
a is increasing [0,∞)→ [0,∞)).

We thus get the desired conclusion of (M-∆)

d1(x, y) + d1(y, z) ≥ d1(x, z).

(M-0): For the “if” direction, note that if x = y, then d1(x, y) = d1(x, x) =√
|x− x| =

√
0 = 0. For the “only if” direction, start by noting that if d1(x, y) = 0,

then by definition of d1 we have
√
|x− y| = 0. The square root is zero only if its

argument is zero, so this gives |x− y| = 0. Also the absolute value is zero only if its
argument is zero, so this gives x− y = 0. From here we solve x = y.

This finishes the proof that d1 is a metric on R.



By contrast, d2 is not a metric on R. To see that, we will check that the prop-
erty (M-∆) fails. For a counterexample consider, e.g., x = 5, y = 6, z = 7. Then
we can calculate

d2(x, y) = |5− 6|2 = 12 = 1,

d2(x, z) = |5− 7|2 = 22 = 4,

d2(y, z) = |6− 7|2 = 12 = 1,

so in violation of (M-∆), we have

d2(x, z) = 4 > 2 = 1 + 1 = d2(x, y) + d2(y, z).

(1) The correct definition of a metric.
(2) Verification of (M-s) for d1.
(3) Verification of (M-∆) for d1.
(4) Verification of (M-0) for d1.
(5) Correctly stated that d2 is not a metric, because it fails (M-∆).
(6) Explicit (counter)example demonstrating the failure of (M-∆) for d2.



Problem 2. (6 pts)
Suppose that X and Y are metric spaces and f : X → Y is a continuous function.

(a) Is it true in general that if A ⊂ X is closed, then also

f [A] =
{
y ∈ Y

∣∣∣ y = f(a) for some a ∈ A
}
⊂ Y

is closed? If yes, justify why; if no, give a counterexample.
(b) Is it true in general that if B ⊂ Y is closed, then also

f−1[B] =
{
x ∈ X

∣∣∣ f(x) ∈ B
}
⊂ X

is closed? If yes, justify why; if no, give a counterexample.

Solution. (a): The image f [A] of a closed set A ⊂ X under a continuous
function f : X → Y is not necessarily closed in Y .

For a concrete counterexample1, consider for example X = (0,∞) and Y = R and
f : (0,∞)→ R given by

f(x) =
15

1 + x
for x ∈ (0,∞),

which is continuous, as a rational function. Let A = [2,∞) ⊂ (0,∞) = X. Then
A is closed: its complement (0,∞) \ [2,∞) = (0, 2) = B1(1) an open ball, and thus
open. The image is

f [A] =

{
y ∈ R

∣∣∣∣ y =
15

1 + x
for some x ≥ 2

}
= (0, 5],

since for any x ≥ 2 we have 0 < 15
1+x
≤ 5, and for any y ∈ (0, 5] we have y = f(x)

at x = 15
y
− 1 ≥ 2. The image f [A] = (0, 5] ⊂ R is not closed, since its complement

R \ (0, 5] = (−∞, 0] ∪ (5,∞) is not open: no open ball of positive radius centered
at the point 0 ∈ R \ (0, 5] is contained in R \ (0, 5].

(b): It is in general true that for f : X → Y continuous and B ⊂ Y closed, the
preimage f−1[B] ⊂ X is closed. Indeed, in the course a characterization for conti-
nuity was given based on preimages of closed sets: a function f is continuous if and
only if for every closed B ⊂ Y we have that the preimage f−1[B] ⊂ X is closed. (A
similar characterization with preimages of open sets was used even more often, and
the two are easily seen equivalent by considering the complemenary subsets). The
“only if” implication in this characterization answers the problem question in the
affirmative.

(1) Clearly and correctly stated that the claim (a) is not generally valid.
(2) A counterexample, with function, domain, codomain, and subset specified.
(3) Justifications of continuity of f , closedness of A, and non-closedness of f [A].
(4) Clearly and correctly stated that the claim (b) is generally valid.
(5) Correct reference (or proof) to a result which implies (b).
(6) Correct reference (or proof) to a result which implies (b).

1Remark: Even easier counterexamples could be constructed as follows. Choose some metric
space Y and a subset X ⊂ Y which is not closed (for example Y = R and X = Q ⊂ R.) . Then
X is also a metric space with the induced metric. Define the embedding f : X → Y by x 7→ x ∈ Y
for x ∈ X. This embedding is clearly continuous (indeed 1-Lipschitz). Setting A = X, we have
that the whole space A ⊂ X is closed. The image is clearly f [A] = f [X] = X ⊂ Y , which was not
closed.



Problem 3. (6 pts)
Suppose that u, v ∈ V are vectors in an inner product space (V, 〈·, ·〉) such that the
inner products among them are

〈u, u〉 =
5

9
, 〈u, v〉 = −10

21
, 〈v, v〉 =

20

49
.

Directly using the defining properties of inner products, show that there exists a
constant α ∈ R such that

u = α v,

and find the value of α.
Hint: To get started, consider whether u− αv could be the zero vector.

Solution. By definition, an inner product on a vector space V is a function
〈·, ·〉 : V × V→ R which satisfies the following 5 properties

(IP1) 〈~x, ~y〉 = 〈~y, ~x〉 for all ~x, ~y ∈ V;
(IP2) 〈c ~x, ~y〉 = c 〈~x, ~y〉 for all c ∈ R and ~x, ~y ∈ V;
(IP3) 〈~x+ ~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉 for all ~x, ~y, ~z ∈ V;
(IP4) 〈~x, ~x〉 ≥ 0 for all ~x ∈ V;

(IP5) 〈~x, ~x〉 = 0 only if ~x = ~0 ∈ V.

From the first three properties one obtains bilinearity:

〈α1x1 + α2x2, β1y1 + β2y2〉
= α1β1 〈x1, y1〉+ α1β2 〈x1, y2〉+ α2β1 〈x2, y1〉+ α2β2 〈x2, y2〉

for all x1, x2, y1, y2 ∈ V and α1, α2, β1, β2 ∈ R.

Assume now u, v ∈ V satisfy the conditions in the problem statement, and denote
x = u−αv for a yet undetermined parameter α ∈ R. Note that the desired property
u = αv is equivalent to x = ~0. From (IP5) and bilinearity, we see that x = ~0 is
equivalent with 〈x, x〉 = 0.

Let us calculate 〈x, x〉 for x = u−αv using bilinearity and the given inner product
values among u and v, noting also 〈v, u〉 = 〈u, v〉 by (IP1):

〈x, x〉 = 〈u− αv, u− αv〉 = 〈u, u〉 − α 〈u, v〉 − α 〈v, u〉+ α2 〈v, v〉

=
5

9
+

20

21
α +

20

49
α2

= 5
(1

3
+

2

7
α
)2

We conclude that x = ~0 if and only if the above expression vanishes, which occurs
if and only if 1

3
+ 2

7
α = 0. The unique value of α for which this occurs is α = −7

6
.

In other words, we have

u = −7

6
v

and no other value works, i.e., u 6= αv for α 6= −7
6
.

(1) stated bilinearity as a consequence of the defining properties (or correct use)
(2) correctly argued that u = αv is equivalent with 〈u− αv, u− αv〉 = 0
(3) used bilinearity to calculate 〈u− αv, u− αv〉
(4) justifications: symmetry 〈v, u〉 = 〈u, v〉 and no zero divisors
(5) solved the equation for α
(6) concluded correctly about the original question



Problem 4. (6 pts)
Let (X, d) be a metric space. Suppose that K1, K2, K3, . . . ⊂ X are compact subsets
of X. Consider the set

A =
{
x ∈ X

∣∣∣ x ∈ Kn for all n ∈ N
}
.

Show that A is compact.

Solution. The notation simplifies by noting that A is defined so that it is precisely
the intersection of the family (Kn)n∈N of compact sets, A =

⋂
n∈NKn.

To prove that A is (sequentially) compact, we must by definition show that any
sequence in A has a convergent subsequence (converging in A ⊂ X). So let (xj)j∈N
be an arbitrary sequence in A. For any j ∈ N, since xj ∈ A =

⋂
n∈NKn, we

have xj ∈ Kn for all n ∈ N. In particular the sequence (xj)j∈N is also a sequence
in Kn, for any n ∈ N. Let us first consider just n = 1, and note that by the
assumed compactness of K1, the sequence (xj)j∈N in K1 has some convergent sub-
sequence (xϕ(j))j∈N, with limit x′ = limj→∞ xϕ(j) ∈ K1 ⊂ X. We will show that this
subsequence (xϕ(j))j∈N is convergent also in A =

⋂
n∈NKn. For this, it suffices to

show that its limit belongs to A, i.e., that x′ ∈ A (since the distances used in A ⊂ X
and K1 ⊂ X are the same, both induced by the metric on X).

Now for any n ∈ N, since (xϕ(j))j∈N is a sequence in Kn (by an observation above),
by compactness of Kn, we know that some subsequence of (xϕ(j))j∈N converges to

some x(n) ∈ Kn. But then in X, that subsequence has as its limits both x(n) ∈
Kn ⊂ X and x′ ∈ K1 ⊂ X (as a subsequence of a sequence converging to x′), so
by uniqueness of limits we have x′ = x(n). In particular we get x′ ∈ Kn. Since this
holds for all n, we conclude that x′ ∈

⋂
n∈NKn = A. This shows that the limit x′ of

the subsequence (xϕ(j))j∈N is in A.2

This establishes that the sequence (xj)j∈N in A has a convergent subsequence
(converging in A ⊂ X). Since the sequence (xj)j∈N in A was arbitrary, this proves
(sequential) compactness of A.

(1) definition of compactness (sequential compactness or covering compactness)
(2) start by picking an arbitrary sequence in A (or an arbitrary open cover)
(3) noted that the sequence is also a sequence in Kn for any n
(4) used assumed compactness of (e.g.) K1 to extract a convergent subsequence
(5) correctly argued that the limit of the subsequence is in every Kn

(6) concluded that the chosen subsequence converges also in A

2Another correct argument leading to the conclusion of this paragraph is the following. Note
that the compact sets Kn ⊂ X are closed (by a theorem in the course), and as the intersection A =⋂

n∈NKn of closed sets, A is itself closed (by a theorem in the course). Then by a characterization
of closedness (a theorem in the course), the sequence (xϕ(j))j∈N in A which converges in X must

in fact have its limit in A ⊂ X.



Problem 5. (6 pts)
Let

S =
{

(x, y) ∈ R2
∣∣∣ x > 0 and y < 0

}
⊂ R2,

and let f : S → R and g : S → R be two continuous functions. Assume that there
exists points z, w ∈ S such that f(z) < g(z) and f(w) > g(w). Show that there
exists a point u ∈ S such that f(u) = g(u).

Solution. The key is to observe that S is connected, and in fact path-connected
(path-connectedness makes the proof somewhat more concrete, although a correct
proof based on connectedness can also be given).

Path connectedness means that for any two points z1 = (x1, y1), z2 = (x2, y2) ∈ S,
there exists a continuous path γ : [0, 1]→ S such that γ(0) = z1 and γ(1) = z2. To
prove path connectedness of S, let z1 = (x1, y1), z2 = (x2, y2) ∈ S be two arbitrary
points in S, and construct γ by the formula

γ(t) =
(
x1 + t(x2 − x1), y1 + t(y2 − y1)

)
for t ∈ [0, 1].

It is clear from the definition that γ(t) ∈ R2 (we have given two real coordinates for
it). For t ∈ [0, 1], we check that in fact γ(t) ∈ S ⊂ R2 as follows. Since z1, z2 ∈ S,
we have x1, x2 > 0 and y1, y2 < 0. Then for t ∈ [0, 1], we write3

x1 + t(x2 − x1) = (1− t)︸ ︷︷ ︸
≥0

x1︸︷︷︸
>0

+ t︸︷︷︸
≥0

x2︸︷︷︸
>0

(∗)
> 0

y1 + t(y2 − y1) = (1− t)︸ ︷︷ ︸
≥0

y1︸︷︷︸
<0

+ t︸︷︷︸
≥0

y2︸︷︷︸
<0

(∗)
< 0,

which are the defining properties of points of S, so γ(t) ∈ S. Therefore indeed γ is a
function [0, 1]→ S. Clearly γ(0) = z1 and γ(1) = z2. Also, γ is ‖z2 − z1‖-Lipschitz
(seen in the course), and therefore continuous.4

Using path-connectedness of S, we will address the problem itself. As in the
problem statement, assume that f, g : S → R are continuous and that z, w ∈ S are
such that f(z) < g(z) and f(w) > g(w). First pick a path from z to w in S, i.e., a
continuous function γ : [0, 1]→ S such that γ(0) = z and γ(1) = w. Construct also
a new function

h : S → R h(u) = g(u)− f(u) for u ∈ S.

In the course we have seen that (finite) pointwise sums and scalar multiples of real-
valued continuous functions remain continuous, so also h = g − f is continuous
S → R. Now the composed function

[0, 1] γ
//

h◦γ
++S

h
// R

t �
γ
// γ(t) �

h
// h
(
γ(t)

)
,

3(*): at least one of the coefficients t and 1− t is non-zero, so we obtain strict inequalities here.
4Alternatively, the continuity of γ is seen from the fact that the component functions are poly-

nomial functions and as such continuous.



is a continuous function h ◦ γ : [0, 1] → R, as the composition of the continuous
functions γ and h. We have

(h ◦ γ)(0) = h
(
γ(0)

)
= h(z) = g(z)− f(z) > 0

(h ◦ γ)(1) = h
(
γ(1)

)
= h(w) = g(w)− f(w) < 0.

By the intermediate value theorem (Bolzano’s theorem) we have that since the
values of the continuous function h ◦ γ : [0, 1] → R at the two endpoints of the
interval [0, 1] have opposite signs, there exists an s ∈ (0, 1) such that (h ◦ γ)(s) = 0.
Let u = γ(s) ∈ S. Then unraveling the definitions, we have

0 = (h ◦ γ)(s) = h
(
γ(s)

)
= h(u) = g(u)− f(u),

from which we solve

f(u) = g(u).

We have thus shown the existence of a point u ∈ S with the desired property.

(1) Observed and justified (at least by a picture) the path-connectedness of S.
(2) For z, w as in the problem, picked a path connecting them.
(3) Constructed h = g − f and h ◦ γ : [0, 1]→ R.
(4) Observed and justified the continuity of g − f and of the composition h ◦ γ.
(5) Applied Bolzano’s theorem to find an s ∈ [0, 1] such that (h ◦ γ)(s) = 0.
(6) Concluded that u = γ(s) has the desired property f(u) = g(u).



Problem 6. (6 pts)

(a) For n ∈ N, let fn : [0,∞)→ R be the function given by

fn(x) =
n

1 + nx+ n2 (x2 − x)2
for x ∈ [0,∞).

Does the function sequence (fn)n∈N converge pointwise? Does the function
sequence (fn)n∈N converge uniformly?

(b) For n ∈ N, let gn : [1,∞)→ R be the function given by

gn(x) =
n

1 + nx+ n2 (x2 − x)2
for x ∈ [1,∞).

Does the function sequence (gn)n∈N converge pointwise? Does the function
sequence (gn)n∈N converge uniformly?

(c) For n ∈ N, let hn : [2,∞)→ R be the function given by

hn(x) =
n

1 + nx+ n2 (x2 − x)2
for x ∈ [2,∞).

Does the function sequence (hn)n∈N converge pointwise? Does the function
sequence (hn)n∈N converge uniformly?

Solution. Recall the definitions of pointwise and uniform convergence (of real-
valued functions, for concreteness; in this problem the codomain of all functions
is R). Let (φn)n∈N be a sequence real-valued functions φn : X → R on a common
domain X. The sequence (φn)n∈N converges pointwise to a limit function φ : X → R
if

∀x ∈ X : lim
n→∞

φn(x) = φ(x).(1)

The sequence (φn)n∈N converges uniformly to a limit function φ : X → R if

lim
n→∞

sup
x∈X

∣∣φn(x)− φ(x)
∣∣ = 0.(2)

Also recall the following results from the course:

• Uniform convergence implies pointwise convergence to the same limit func-
tion.
• The limit φ of a uniformly convergent sequence of continuous functions is

continuous.

(a): We claim that the given sequence (fn)n∈N of functions fn : [0,∞)→ R does not
converge pointwise. It will follow that it can not converge uniformly either (since
uniform convergence implies pointwise convergence). Consider the point x = 0. The
value of the n:th function at x = 0 is

fn(0) =
n

1 + n 0 + n2(02 − 0)2
=
n

1
= n.

Now limn→∞ fn(0) = limn→∞ n does not exist (in R), so we do not have conver-
gence (1) of the values at x = 0, and therefore no pointwise convergence of (fn)n∈N.

(b): We claim that the given sequence (gn)n∈N of functions gn : [1,∞) → R con-
verges pointwise but not uniformly. To verify pointwise convergence, let x ∈ [1,∞).



Consider separately the cases x = 1 and x > 1. If x = 1, we have

gn(1) =
n

1 + n 1 + n2(12 − 1)2
=

n

1 + n
=

1

1 + 1
n

−→ 1

1
= 1 as n→∞.

If x > 1, we have x2 − x = x(x− 1) > 0 and therefore (x2 − x)2 > 0. We then get

gn(x) =
n

1 + nx+ n2(x2 − x)2
=

1
n

(x2 − x)2 + x
n

+ 1
n2

−→ 0

(x2 − x)2
= 0 as n→∞.

We have shown convergence of values at all points, and so get pointwise convergence
to the limit function

g(x) =

{
1 for x = 1

0 for x > 1.

This limit function g is not continuous, so we cannot have uniform convergence
of (gn)n∈N: each of the functions gn is continuous as a rational function, and the
limit function of a uniformly convergent sequence would then be continuous.

(c): We claim that the given sequence (hn)n∈N of functions hn : [2,∞) → R
converges uniformly to the limit function h, which is the zero function: h(x) = 0 for
all x ∈ [2,∞). From uniform convergence, also pointwise convergence will follow.
To verify the uniform convergence, observe that for any x ∈ [2,∞), we have x ≥ 2
and x2 − x = x(x− 1) ≥ 2 and therefore (x2 − x)2 ≥ 4. We then get∣∣hn(x)− h(x)

∣∣ =
∣∣hn(x)− 0

∣∣ = hn(x) =
n

1 + nx+ n2(x2 − x)2
≤ n

1 + 2n+ 4n2
.

Since this holds for any x ∈ [2,∞), we get

0 ≤ sup
x∈[2,∞)

∣∣hn(x)− h(x)
∣∣ ≤ n

1 + 2n+ 4n2
. =

1
n

4 + 2
n

+ 1
n2

−→ 0

4
= 0 as n→∞.

This shows (by an application of the squeeze theorem) the uniform convergence (2)

lim
n→∞

sup
x∈[2,∞)

∣∣hn(x)− h(x)
∣∣ = 0.

(1) Stated and verified that (fn)n∈N does not converge pointwise.
(2) Justified that (fn)n∈N cannot converge uniformly either.
(3) Stated and verified that (gn)n∈N converges pointwise.
(4) Justified that (gn)n∈N cannot converge uniformly.
(5) Observed pointwise convergence of (hn)n∈N (consequence of uniform conv.).
(6) Stated and verified that (hn)n∈N converges uniformly.
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