Exercise 1. Consider two cylindric reservoirs used for storing water. The geometry of the vessel is summarised by the cross-sectional areas $A_{1}$ and $A_{2}$ and the levels $h_{1}(t)$ and $h_{2}(t)$ which indicate the liquid hold-up at time $t$.

We will assume that water is extracted from the vessels exclusively by gravity: That is, no pumps are used. The outflow from the first tank to the second tank is $F_{m}(t)=\alpha_{1} h_{1}(t)^{1 / 2}$, whereas the outflow from the second tank is $F_{o}(t)=\alpha_{2} h_{2}(t)^{1 / 2} . \alpha_{1}$ and $\alpha_{2}$ are constant resistance-to-flow coefficients. For the sake of completeness, we will denote the influent flow-rate to the first tank as $F_{i}(t)$ and we let $F_{d}(t)$ be an additional influent to the first tank.


We are interested in controlling the level of water in the two tanks by manipulating the influent flow-rate $F_{i}$ to the first tank. Moreover, we will assume that both $h_{1}(t)$ and $h_{2}(t)$ are measured quantities and that $F_{i}(t), F_{m}(t), F_{d}(t)$, and $F_{o}(t)$ are measured, as well.

1. Write the total mass balances for the two vessels and use it as system model ( $10 \%$ );
2. Determine which process variables are input, measured, and state variables $(10 \%)$;
3. Restate the total mass balance in state-space form in terms of $x, u$ and $y(10 \%)$;
4. Consider the steady-state $\left(\widetilde{F}_{i}, \tilde{h}_{1}=\widetilde{F}_{i} \alpha_{1}^{-2}, \widetilde{h}_{2}=\widetilde{F}_{i} \alpha_{2}^{-2}, F_{d}=0\right)$, linearise the model
around it and write its approximation using the around it and write its approximation using the deviation variables $x^{\prime}, u^{\prime}$ and $y^{\prime}(30 \%)$;
5. For $A_{1}=1, A_{2}=1, \alpha_{1}=1, \alpha_{2}=1$ and $\left.\tilde{F}_{i}=1, i\right)$ study the stability of the linear approximation ( $10 \%$ ); ii) compute its controllability matrix and comment on the fullstate controllability of the model pair $(A, B)(10 \%)$; and, $i i i)$ compute its observability matrix and comment on the full-state observability of the model pair $(A, C)(10 \%)$.

This is an open-book examination. In addition to pencil/pen, eraser and other writing material, the use of own printed copies of the course material and personal notes is allowed.

