ELEC-A7200 Signals and Systems

Problem 1. Consider the periodic signal

$$x(t) = 2\cos\left(\frac{2\pi t}{T_0}\right) - \cos\left(\frac{4\pi t}{T_0}\right)$$

with period $T_0 > 0$.

(a) Determine the average power of the signal:

$$P = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt$$

(1 p)

(b) Determine the coefficients x_k for the exponential Fourier series representation:

$$x(t) = \sum_{k=-\infty}^{\infty} x_k e^{j\frac{2\pi k}{T_0}t}, \quad x_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j\frac{2\pi k}{T_0}t} dt$$

(2 p)

(1 p)

- (c) Sketch the two-sided amplitude spectrum.
- (d) Sketch the two-sided phase spectrum. (1 p)
- (e) Sketch the one-sided power spectrum. (1 p)

Problem 2. Consider the trapezoidal pulse

$$x_1(t) = \begin{cases} \frac{4t}{T}, & 0 \le t < \frac{T}{4}, \\ 1, & \frac{T}{4} \le t \le \frac{3T}{4}, \\ \frac{4(T-t)}{T}, & \frac{3T}{4} < t \le T, \\ 0, & \text{otherwise,} \end{cases}$$

with T > 0.

- (a) Sketch $x_1(t)$ for $0 \le t \le T$. (1 p)
- (b) Determine the time derivative

$$x_2(t) = \frac{d}{dt}x_1(t)$$

and sketch $x_2(t)$.

(1 p)

(c) Determine $X_2(f)$, the Fourier transform of $x_2(t)$:

$$X_2(f) = \int_{-\infty}^{\infty} x_2(t)e^{-j2\pi ft} dt.$$

(2 p)

(d) Using the Fourier transform differentiation property

$$\mathcal{F}\left\{\frac{dx(t)}{dt}\right\} = j2\pi f X(f),$$

determine $X_1(f)$ from $X_2(f)$.

(2 p)

Problem 3. (a) Let

$$x(t) = e^{-t}u(t), \quad h(t) = u(t),$$

where u(t) is the unit step function. Compute the convolution

$$y(t) = (x * h)(t) = \int_{-\infty}^{\infty} x(\lambda)h(t - \lambda) d\lambda$$

and sketch y(t) versus t.

(3 p)

(b) Let

$$X(f) = \text{rect}\left(\frac{f}{B}\right), \quad B = 200 \text{ kHz},$$

and

$$H(f) = \frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0), \quad f_0 = 100 \text{ MHz}.$$

Compute the convolution in the frequency domain:

$$Y(f) = X(f) * H(f)$$

and sketch |Y(f)| versus f.

(3 p)

Problem 4. A periodic signal x(t) is sampled using sample interval $T_s=10$ ms to obtain a sequence $x(0), x(T_s), x(2T_s), \cdots x((N-1)Ts)$. An N=20-point FFT is computed from the samples, and the magnitude spectrum |X[k]| is shown below (index $k=0,1,\ldots,19$).

(a) What is the sampling frequency f_s ?

(1 p)

(b) What is the Nyquist frequency f_N ?

(1 p)

- (c) Determine the frequencies (in Hz) corresponding to each FFT index k. Express your answer as a table for $k=0,1,\ldots,19$.
- (d) Determine $\sum_{n=0}^{N-1} |x(nT_s)|^2$ using Parseval's theorem. (2 p)

Problem 5. A single-tone signal

$$x(t) = \cos(2\pi f_0 t)$$

is applied to a nonlinear audio amplifier modeled as

$$y(t) = ax(t) + bx^{3}(t),$$

where a and b are constants. Assume $f_0 = 50$ kHz, a = 2.0, and b = -0.5.

(a) Express y(t) as a cosine Fourier series containing only the fundamental and third harmonic terms.

Hint:

$$\cos^3 \theta = \frac{3\cos\theta + \cos 3\theta}{4}.$$

(2 p)

(b) Compute the third-order harmonic distortion (THD3) defined as

$$THD_3 = \frac{Amplitude \ of \ 3rd \ harmonic}{Amplitude \ of \ fundamental} \times 100\%.$$

Give your answer in percent.

(2 p)

(c) The output is to be passed through a low-pass Butterworth filter to reduce power of the third harmonic $3f_0$ by at least 20 dB. Assume $f_c = 1.5f_0$. The filter amplitude response is

$$A(f) \triangleq |H(f)| = \frac{1}{\sqrt{1 + \left(\frac{f}{f_c}\right)^{2n}}},$$

where f_c is the cutoff frequency and n is the filter order.

Determine minimum integer n to meet the attenuation requirement.

Theorems of the fourier transform	Function	Transform
Linearity	ax(t) + by(t)	aX(f) + bY(f)
Time delay or time shift	x(t-a)	$X(f)e^{-j2\pi fa}$
Scale change	x(at)	$\frac{1}{ a }X(\frac{f}{a})$
Conjugation	$x^*(t)$	$X^*(-f)$
Duality	X(t)	x(-f)
Frequency shift	$x(t)e^{j2\pi at}$	X(f-a)
Linear modulation	$x(t)\cos(2\pi at + b)$	$\frac{e^{jb}X(f-a)+e^{-jb}X(f+a)}{2}$
Differentiation	$\frac{d^n x(t)}{dt^n}$	$(j2\pi f)^n X(f)$
Integration	$\int_{-\infty}^{t} x(u) du$	$\frac{X(f)}{j2\pi f}$
Convolution	$x(t) \otimes y(t)$	X(f)Y(f)
Multiplication	x(t)y(t)	$X(f) \otimes Y(f)$
Multiplication by t^n	$t^n x(t)$	$(-j2\pi)^{-n}\frac{d^nX(f)}{df^n}$

Fourier transforms	Function	Transform
Rectangular pulse	rect(t/a)	$a \cdot \operatorname{sinc}(af)$
Triangular pulse	tria(t/a)	$a \cdot \operatorname{sinc}^2(af)$
Gaussian pulse	$e^{-\pi(\frac{t}{a})^2}$	$a \cdot e^{-\pi(af)^2}$
One sided exponential pulse	$e^{-t/a}u(t)$	$\frac{a}{1+j2\pi fa}$
Two sided exponential pulse	$e^{- t /a}$	$\frac{2a}{1+(2\pi fa)^2}$
Sinc pulse	sinc(at)	$\frac{1}{a} \operatorname{rect}(f/a)$
Constant	а	$a \cdot \delta(f)$
Phasor	$e^{j(2\pi at+b)}$	$e^{jb}\delta(f-a)$
Cosine wave	$\cos(2\pi at + b)$	$\frac{e^{jb}\delta(f-a)+e^{-jb}\delta(f+a)}{2}$
Delayed impulse	$\delta(t-a)$	$e^{-j2\pi fa}$
Step	<i>u</i> (<i>t</i>)	$\frac{\delta(f)}{2} + \frac{1}{j2\pi f}$

$$T_0 = \frac{1}{f_0} = \frac{2\pi}{\omega_0}$$

$$e^{j\phi} = \cos(\phi) + j \sin(\phi)$$

$$\sin(\phi) = \frac{1}{2j} (e^{j\phi} - e^{-j\phi})$$

$$\cos(\phi) = \frac{1}{2} (e^{j\phi} + e^{-j\phi})$$

$$\sin^2 \phi + \cos^2 \phi = 1$$

$$\cos(\phi) = \sin(\phi + \pi/2)$$

$$\sin(\phi) = \cos(\phi - \pi/2)$$

$$\sin(\alpha) \cos(\beta) = \frac{\sin(\alpha - \beta) + \sin(\alpha + \beta)}{2}$$

$$\sin(\alpha) \sin(\beta) = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$

$$\cos(\alpha) \cos(\beta) = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2}$$

$$x(t) \otimes y(t) = \int_{-\infty}^{\infty} x(\lambda)y(t - \lambda) d\lambda = y(t) \otimes x(t)$$

$$x(t) = \sum_{k=-\infty}^{\infty} x_k e^{j2\pi k f_0 t} = \frac{\alpha_0}{2} + \sum_{k=1}^{\infty} \left[\alpha_k \cos(2\pi k f_0 t) + \beta_k \sin(2\pi k f_0 t) \right]$$

$$x_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-j2\pi k f_0 t} dt$$

$$\alpha_k = 2 \cdot \operatorname{Re}\{x_k\}, \quad \text{when } x(t) \in \mathbb{R}$$

$$\beta_k = -2 \cdot \operatorname{Im}\{x_k\}, \quad \text{when } x(t) \in \mathbb{R}$$

$$X(f) = \mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j2\pi f t} dt$$

$$x(t) = \mathcal{F}^{-1}\{X(f)\} = \int_{-\infty}^{\infty} x(f) e^{j2\pi f t} df$$

$$x_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi k n/N}$$

$$x_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-j2\pi k n/N}$$

$$f_0 = \frac{1}{N \cdot T_s} \sum_{n=0}^{\infty} X$$

$$s = \sigma + j\omega = \sigma + j2\pi f$$

$$X(s) = \mathcal{L}\{x(t)\} = \int_{0}^{\infty} x(t) \cdot e^{-st} dt$$

$$d_n = \frac{u_n}{u_1}$$

$$d_{\text{tot}} = \sqrt{\sum_{n=2}^{\infty} d_n^2}$$