Instructions

Exam aids:

- You are allowed to bring one (1) hand-written A4 paper (both sides of the paper can be
 used) with formulas, notes, etc., to be used during the exam.
- You are not allowed to use any type of calculator.

Exam structure

The exam consists of two types of problems: multiple-choice problems (Problem 1), and main problems (Problems 2-6).

- For the multiple choice problems, only the answer is needed.
- For the main problems, you have to provide complete solutions with well-motivated steps in all of your calculations, and you have to motivate your answers.
- The total number of available points are 60 points. For a passing grade, you need to get at least 30 points.

How to hand in solutions

- Start the solution of each new problem at the top of a new sheet. For the multiple-choice
 problems, you can write all answers on the same sheet.
- Number all of your solution sheets and hand them in in sorted order.

Good luck!

Multiple Choice Problems

Problem 1.1 (2.5p)

ELEC-C5231

Let h[k] be the impulse response of a linear, time-invariant, causal, and BIBO stable filter.

Select all the TRUE statements:

a) The impulse response is absolutely summable, that is,

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty.$$

- b) h[n] = 0 for all n < 0.
- c) All zeros of the transfer function are inside the unit circle.
- d) All poles of the transfer function are inside the unit circle.

Problem 1.2 (2.5p)

Which pole-zero plot corresponds to the given magnitude response?

- a) A
- b) B
- c) C
- d) D

Problem 1.3 (2.5p)

Let the input-output relationships be defined as below. Select all resulting systems that are BIBO stable:

- a) $y[n] = \frac{1}{2}y[n-1] + x[n] \frac{1}{2}x[n-2]$
- b) $y[n] = 4y[n-1] + 2x[n] \frac{1}{2}x[n-2]$
- c) $y[n] = \cos\left[\frac{\pi}{4}\right] \cdot x[n]$

Problem 1.4 (2.5p)

Let X(z) and H(z) be z-transforms of x[n] and h[n], respectively. Let $a \in \mathbb{R}$ and define the delayed sequence $h_2[n] = h[n-k]$ for some k. Then, the z-transform of $ax[n] * h_2[n]$ can be written as:

- a) $aX(z)H(z^{-k})$
- b) $az^{-k}X(z)H(z)$
- c) $X(az)H(z^{-k})$
- d) X(az) + H(z-k)

Main Problems

Problem 2 (10p)

Consider the system defined by the difference equation

$$y[n] = -0.8y[n-1] + x[n] + 0.3x[n-1].$$

- a) (2.5p) Draw the system on Direct Form I.
- b) (2.5p) Compute the transfer function H(z).
- c) (5p) Given the input $x[n] = \delta[n]$, what is the output y[n]?

Problem 3 (10p)

Consider the following z-domain response:

$$H(z) = \frac{\frac{1}{2} - \frac{1}{2}z^{-1}}{\frac{4}{9} + z^{-1}}.$$

- a) (2.5p) Compute poles and zeros and plot the pole-zero plot.
- b) (5p) Sketch the approximate magnitude response based on the pole zero plot.
- c) (2.5p) Is the filter FIR or IIR? What is the filter type (e.g., lowpass)? Is it stable? Is it minimum or maximum phase? Is it invertible? Provide a reasoning for each attribute.

Problem 4 (10p)

A new measurement device in your laboratory is known to have an unwanted effect that can be modeled as the linear filter

$$y[n] = ax[n] + bx[n-1],$$

where a and b are unknown real coefficients. You test the sensor by giving it a sequence $\{1, 2, 3\}$ for which the (filtered) response is $\{1, 0, -1, -6\}$.

- a) (5p) Find the coefficients a and b.
- b) (5p) Is it possible to design a stable and causal filter which would reverse the effects caused by the measurement device? Motivate your answer.

Problem 5 (10p) Consider the following LTI block diagram:

ELEC-C5231

Let a = 0.5, b = 2, and c = 1/3.

- a) (2.5p) Compute the z-domain response H(z).
- b) (5p) Draw the system in Direct Form II.
- c) (2.5p) Is the system stable? Is the system invertible?

Problem 6 (10p)

Consider a wireless link illustrated in the figure below:

The transmitted signal arrives in two paths: a direct line-of-sight (LOS) path and slight reflection from a building nearby. The LOS path arrives at the receiver after N samples from the moment the signal gets transmitted. The reflected path travels a longer distance and arrives at the receiver 6 samples later. Additionally, the reflection absorbs 50% of the transmitted energy.

- a) (5p) Find the difference equation describing the wireless link, and derive the corresponding frequency response $H(e^{j\omega})$.
- b) (5p) The wireless link can be used for transmitting a signal using any (normalized) frequency ω in the interval $(0, \pi/2]$. What frequency in this interval is the best to transmit at as to maximize received energy? What frequency is the worst? Motivate your answers.