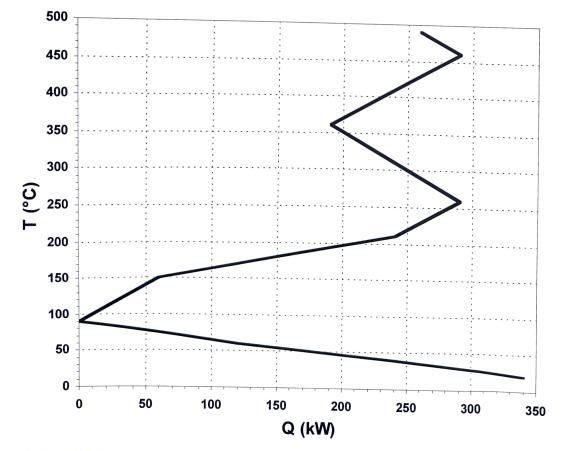

AAE- E3007 Process Into Exam 2.12.2025 at 9-12	gration and Energy Optimization D, (5 cr)	1 2	3	4 5	6	7
Name, Student number		-			 	

EXAM PART A: Answer part A questions on separate answer sheet


1. Pinch composite curves. [8 p]

We have the following process:

- a) Extract the pinch streams (3p)
- b) Draw the hot and cold composite curves. (2p)
- c) What are the minimum hot and cold utility consumptions? (2p)
- d) What is the pinch temperature? (1p)

2. Grand composite curve. [5 p]

 Λ Tmin = 20°C.

What are the minimum hot and cold utility consumptions, and what is the pinch temperature? (5p)

3. Transshipment model. [7 p]

Using the data below, formulate the problem as a LP TRANSSHIPMENT MODEL.

DATA

DAIA				
Stream	T _{start} (°C)	T_{target} (${}^{o}C$)	m*cp (kw/K)	Q (kW)
H1	120	80	4	
C1	50	90	1	
C2	40	150	1	
Steam	200	200		
Cooling water	20	20		
Δtmin	10 °C			

Journal of Space Journal of		C- E3007 Process Integration m 2.12.2025 at 9-12			•										
Static models in dynamic programming (DP) algorithm must be convex Concave but not concave Concave but not concave Both convex and concave Both convex and concave Concave but not concave Both convex and son convex function, g is set of convex functions, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g and h are sets of convex functions Both harms f(x) = min -f(x) Both fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function and the infection fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex function, g is empty set, and h is a set of linear function fis a convex funct	lan	ne, Student number													
Each correct answer = +1 point, wrong answer = -0.5 points, no answer = 0 points. Function f(x,y) = -x+y-1 is Static models in dynamic programming (DP) algorithm	E X Jse	AM PART B: Answer pa answer sheets only if you run out	of sp	3 quest	ions (n t	he qı	iestio	n she	eet				-	
Each correct answer = +1 point, wrong answer = -0.5 points, no answer = 0 points. Function f(x,y) = -x+y-1 is Static models in dynamic programming (DP) algorithm	١.	Mark the true statement in th	ie fo	llowing	questi	ons	[0-6 p	oints]							
Convex but not concave Concave but not convex Both convex and concave Concave but not convex Both convex and concave Concave but not convex Both convex and concave Concave but not convex Both convex and concave Concave but not convex Both convex and concave Concave but not convex Concave function, g is set of convex functions, and h is a convex problem Concave function, g is empty set, and h is a set of linear function Concave function, g is empty set, and h is a set of linear function Concave function, g is empty set, and h is a set of linear function Convex functions Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h is a set of linear function Convex function, g is empty set, and h		Each correct answer $= +1$ point, w	vrong	answer =	= - 0.5 p	oints	s, no ai	nswer =	0 poi	nts.					
Concave but not convex Both convex and concave Concave function, g is set of convex functions, and h is an empty set (vector) of functions Fis a concave function, g is empty set, and h is a set of linear function Fis a concave function, g and h are sets of convex functions Dijkstra's shortest path algorithm can be applied for solving transshipment network flow problem unit commitment of power plants combined heat and power transmission problem Set (vector) of functions Fis a concave function, g is empty set, and h is a set of linear function playstra's shortest path algorithm can be applied for solving transshipment network flow problem unit commitment of power plants combined heat and power transmission problem Set (vector) of functions Fis a concave function, g is empty set, and h is a set of linear function playstra's shortest path algorithm can be applied for solving transshipment network flow problem unit commitment of power plants combined heat and power transmission problem Set (vector) of functions f is a convex function, g is empty set, and h is a set of linear function playstra's shortest path algorithm can be applied for solving transshipment network flow problem unit commitment of power plants combined heat and power transmission problem Set (vector) of functions f is a convex function, g is empty set, and h is a convex function playstra's shortest path algorithm can be applied for solving transshipment network flow problem unit commitment of power plants combined heat and power transmission problem Set (vector) of functions f is a convex function, g is empty set, and h is a convex functio			,				namic j	orogram	ımıng	(DP)	algor	ithm			
Both convex and concave	_														
C) For an optimization model -min f(x) = -max f(x) -max f(x) = min -f(x) max f(x) = min -f(x) max f(x) = min -f(x) (a) A basic solution of an LP model can be infeasible can be unbounded is optimal 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual fixed cost, €/a Copper 1.50 Annual fixed cost, €/a Copper 1.50 Annual fixed cost, €/a Copper 2.50 Annual fixed cost, €/a Copper 3.50 Annual fixed cost,			_			VCA									
-min f(x) = -max f(x) -max f(x) = min -f(x) max f(x) = min -f(x) max f(x) = min -f(x) his a convex function, g is set of convex functions, and h is an empty set (vector) of functions f is a concave function, g is empty set, and h is a set of linear function f is a convex function, g and h are sets of convex functions A basic solution of an LP model can be infeasible can be unbounded is optimal combined heat and power transmission problem 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Annual fixed cost, €/a Annual fixed	_	Both convex and concave													
-min f(x) = -max f(x) -max f(x) = min -f(x) max f(x) = min -f(x) max f(x) = min -f(x) e) A basic solution of an LP model can be infeasible can be unbounded is optimal 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for abuilding as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Annual fixed cost, €/a Ann	2)	For an optimization model	d)												
max f(x) = min -f(x) f is a concave function, g is empty set, and h is a set of linear function financial financi		$-\min f(\mathbf{x}) = -\max f(\mathbf{x})$						s set of o	convex	k func	tions,	and h	is an	emp	ŧу
f is a convex function, g and h are sets of convex functions by A basic solution of an LP model can be infeasible can be unbounded is optimal combined heat and power transmission problem combined heat and power transmission problem combined heat and power transmission problem 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Annual fixed cost, €/a					-			:t.	, act o	nd h	ic o co	ot of li	ingar f	incti	Λt
e) A basic solution of an LP model f) Dijkstra's shortest path algorithm can be applied for solving can be infeasible transshipment network flow problem unit commitment of power plants combined heat and power transmission problem 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Annual fixed cost,		$\max f(\mathbf{x}) = \min -f(\mathbf{x})$												uncu	0.
can be infeasible transshipment network flow problem unit commitment of power plants is optimal combined heat and power transmission problem 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, \$\xi'a\$ Annual costs, \$\xi'a\$ Annual fixed cost, \$\xi'a\$ Annual fixed cost, \$\xi'a\$ Storage sizes, MWh I 100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 11000000	۵)	A basic solution of an LP model	_												
□ can be unbounded □ unit commitment of power plants □ is optimal □ combined heat and power transmission problem 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Production capacities, MW Annual fixed cost, €/a Production capacities, MW **OPER** **OPER** **OPER** **INXED** **INXED** **INSED** **INSED** **OPER** **INAED**		can be infeasible		-				_		11			Ü		
is optimal combined heat and power transmission problem 5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, \(\xi \)/ Annual costs, \(\xi \)/ Annual fixed cost, \(\xi \)/ BECS 6.0 BHS					-			-							
5. Energy supply and storage optimization for buildings [max 4 p] Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Production capacities, MW Annual fixed costs, €/a Production capacities, MW Annual fixed cost, €/a Annual fixed cost, €/a Storage sizes, MWh **CS 50000 120							_	-	ssion	probl	em				
Diagrams below show optimal annual operative and fixed costs and production/storage capacities for a building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Production capacities, MW 2.5 2.0 300000 150000 150000 150000 150000 150000 10000	_		optir	nization	for bu	ildi	ngs Im	ax 4 p	1						
building as described in course material. Answer the following questions briefly (one sentence). Annual costs, €/a Annual costs, €/a Production capacities, MW 2.5 1.5 2.0 1.5 2.0 1.5 2.0 1.5 2.0 3.0000 1.50000 1.	D	ingrams below show optimal an	ınual	operativ	e and f	ixed	costs	and pro	oducti	ion/st	orage	e capa	acities	for	a
Annual fixed cost, €/a Annual fixed cost, €/a	bı	uilding as described in course m	ateri	al. Answ	er the	follo	wing	questio	ns bri	efly (one s	enter	ice).		
350000 250000 250000 250000 150000 150000 0 0 All NoDH NoDC NoPV NoH&C NoSor Annual fixed cost, €/a **CS **HS **Storage sizes, MWh **CS **HS **Storage sizes, MWh **Annual fixed cost, €/a **CS **HS **Storage sizes, MWh **Annual fixed cost, €/a		Annual costs, €/a							Producti	on capa	cities,	MW			
250000 200000 150000 100000 50000 All NoDH NoDC NoPV NoH&C NoStor Annual fixed cost, €/a Storage sizes, MWh 140000 120000 120000 100000 50000 60000 40000 20000 All NoDH NoDC NoPV NoH&C NoStor ■HS ■H&C ■HFC 3.0 ■HFC 3.0 ■HFP 1.0 ■PP NoH&C NoStor		STATION .											45000	1	■ H.
200000 150000 0 All NoDH NoDC NoFV NoH&C NoSor Annual fixed cost, €/a Storage sizes, MWh 140000 120000 120000 0 All NoDH NoDC NoFV NoH&C NoSor ■HS ■HS ■HS ■HS ■HS ■HS ■HS ■HS ■HS ■H	-	\$200000 \$200000 \$200000 \$200000			n OPER	1,5	0391169	N. P.	123010		larens.			9	■H
50000 0 All NoDH NoDC NoPV NoH&C NoStor Annual fixed cost, €/a Storage sizes, MWh 140000 120000 100000 60000 40000 20000 0 All NoDH NoDC NoPV NoH&C NoStor ■HC ■HC ■HC ■HC ■HC ■HPI ■PV ■HPI ■PV ■HO ■HPI ■PV ■HPI ■PV ■HPI ■PV ■HPI ■PV ■HPI ■PV ■HPI ■HPI ■PV ■HPI ■HPI ■PV ■HPI ■HPI ■HPI ■HPI ■HPI ■HPI ■HPI ■HPI		Marie Paris Paris							-		tuni Luni				■ PI
Annual fixed cost, €/a Annual fixed cost, €/a Storage sizes, MWh 140000 1200000 120000 1200000 120000 120000 1200000 1200000 1200000	1	50000									(PC	110			■Di
140000 120000 100000 80000 600000 40000 20000 0 All NoDH NoDC NoPV NoH&C NoStor NoStor NoBo NoDE NoPV NoH&C NoStor			NoH&C	NoStor			All	NoDH	NoDC	N	oPV	NoH&C	NoSta	•	
120000 120000 100000 80000 60000 40000 20000 0 All NoDH NoDC NoPV NoH&C NoStor NoStor		Annual fixed cost, €	/a			60			Stora	ge size	s, MWh	ı			
100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 10000000 10000000 100000000		and the same of th													
60000 40000 20000 0 All NoDH NoDC NoPV NoH&C NoStor upp 0.0 All NoDH NoDC NoPV NoH&C NoStor					■H&C			V (1)							- H
20000 O All NoDH NoDC NoPV NoH&C NoStor #PP 0,0 All NoDH NoDC NoPV NoH&C NoStor			104	<u>25,46</u>				1000							= C:
All NoDH NoDC NoPV NoH&C NoStor - All NoDH NoDC NoPV NoH&C NoStor		20000										88			
5 a. Why are the fixed costs in the NoDH configuration higher than in the other scenarios? [2 p]		All NoDH NoDC NoPV												x	
J.a. Hilly the tile thed costs in the 1.222 configuration inglier than in the other bestation. [27]			- NI.	DH con	tiourat	ion l	nigher	than in	the of	her so	cenar	ios? [2 pl		

5.b: Why are the overall production capacities highest in the NoStor configuration? [2 p]

An LP model has 4 variables and 5 inequality constraints. After converting the model into canonical format by introducing slack/surplus variables:					
a) How many variables does the model contain? [1 p]					
b) How many basic solutions does the model potentially have? [2 p]					

7. Combined heat and power modelling [15 p]

A CHP plant can operate at the extreme points 1-4 shown in the following table and linearly between them.

- a) Draw the characteristic operating region in the PQ plane in the space to the right of the table [2 p]
- b) Compute the energy efficiency of the plant at each point and mark it in the table [1 p]
- c) Plant is producing 150MW power and 150MW heat. Compute fuel consumption and efficiency and mark them on **row** c of the table [2 p]

Formulate the following problems as LP or MILP models. Tell if each model is convex or non-convex.

- d) Fuel price is C_F , market price for power is C_P and heat price is C_Q (E/MWh). Heat demand is Q. Using **extreme point formulation** for CHP, formulate a model for maximizing operative profit [5 p]
- e) If the plant is shut down, no fuel is consumed, and no power is generated. Extend the previous model to include the option of shutting down the plant. [5 p]

Point	Power	Heat	Fuel	4.b	4.a Picture
	generation	production	consumption	Efficiency	
	P (MW)	Q (MW)	F (MW)	(%)	
1	100	0	300		
2	200	0	500		
3	100	100	250		
4	200	200	440		
c	150	150			

7.d: Define model below: decision variables, objective function, and constraints.

7.e: Additional or modified model components: