T-106.5600 Concurrent Programming Examination 8.1.2007 /v2 /hsa 172
NOTE: Maximum grade for questions 1,2 is 10p, and for questions 3,4 and 5 itis 6p.

1. Each of the three arrays A[], B[] and C[]contains an ordered (ascending) sequence of integers. It’s
know that at least one integer value appears in all of the three sequences. Consider the following concurrent
program aimed to find the smallest of such common values, X say:

int a = A[0}; b = B[0}; ¢ = C[0]; i,7,k = 0,0,0;

co while true if (a < b) {i = i+l; a = A[il};

// while true if (b < ¢) {j = j+1; b = B[31};

// while true if (c < a) {k = k+l; ¢ = C[kl};

oc
(2) Assuming first, that the scheduler executes each of the i £-statements of three loop bodies as atomic
actions, i.e. sequentially, show that the following assertion is an invariant of the program:

I: {(Forall i"<i: A[i’]<X ) and (Forall j'<j: B[j’1<X) and (Forallk’<k: C[k’]<X)}

and based on it, make argument that the program works correctly, i.e. thestate {a = b = c = X} will
be reached, after which there is no progress. (b) Does the program meet the requirements of the At-Most-
Once property as a concurrent program, where each reference to any variable is an individual atomic
action? (c) Show that I holds also then. (d) The program misses to terminate itself properly, why ? (e)
Show how to fix it, and give an argument showing that the termination doesn’t happen prematurely.

2. Consider the following proposal for semaphore implementation, where INC(x) atomically adds, and
DEC(x) atomically subtracts 1 from integer variable x. Both INC(x) and DEC(x) return the new value of x:

/* P(s): */

while (DEC(s) < 0) {
INC(s); #undo decrement
}

/* Vi(s): */
INC (s)

Answer to the following questions with a proper argumentation.

() Is this solution safe ? Provide and argumentation showing that the standard semaphore invariant :
{value(s) = initial(s) + #V(s) - #P(s) = 0 }, is preserved. The #V(s), #P(s) denote the number of
passed V(s) and P(s) operations.

(b) Is there a possibility for a deadlock 7

(¢) Does it exclude starvation, i.e. is the solution fair assuming normal weakly fair scheduling ?

(d) Is there a possibility for livelock ?

(e) What is bad with it performance wise?

(f) How would you improve its performance?

) Analyze your improved version also against your answers from (a) to (d). Is there any change ?

3. Give all possible final values and corresponding traces of the variable x leading to proper termination of
the following program. Assume that all the assignment statements to x are executed as atomic actions.

int x = 0; sem s1 =1, s2 =1, s3 = 0;

co P(sl); x = x + 7; P(s2); x = 2 * x; V{(s3); x = x * 1; V{(sl);
// P(sl); x = x + 5; V(s2); x =5 * x; P(s3); x = x * 13; V(sl);
// P(s2); x = x + 3; P(sl); x = x + 9; V(s2); x = x * 11; V(sl);

oC




T-106.5600 Concurrent Programming Examination 8.1.2007 /hsa

2/2

4. One-lane bridge. Cars coming form north and south have to cross a river along a very long and narrow
one-lane bridge. Cars driving to the same direction may be on the bridge at the same time, but cars heading

to opposite directions can’t. Consider the following generic monitor code outline for the solution to the

problem, where the cars are processes calling the public methods cross_from North() and
cross_from_South() of the monitor One lane bridge.

//north-south ¢ bridge
//scuth-north bridge
//condition to » north
//condition to south
private procedure startNorth() {
ns++
}
private procedure endSouth() {
}
public cross from North() { // this 1i1s needed to provide a simpler API

startNorEh();
// north-south crossing operation is embedded here
endSouth () ;

// the south-north direction is symmetric and need not be repeated

}

Complete the missing peaces of the synchronization logic of the monitor procedures startNorth ()and

endSouth () without fairness considerations for : a) generic monitor with SC-semantics, (b) with SW-

semantics, (¢) modify the solution to work with Java synchronized classes and methods. NOTE: The
solution can and should be simple, short and clearly written. Any failure to meet these criteria will
decrease the grading respectively.

5. Tuple Space. (a) Write a simple, straight-line (= loop-free) tuple space solution to the readers-writers

problem using the tuple space primitives of Java: postnote, removenote, and readnote. Hint: Use justa

simple tuple (“RW?”, r) maintaining the number of active readers. Each of the synchronization operations
enter-read, exit-read, enter-write, exit-write should take very few tuple operations. (b) Is your solution fair ?
NOTE: The solution can and should be simple, short and clearly written. Any failure to meet these criteria

will decrease the grading respectively.




