Answer all four questions!

Assignment 1

Find the current I (3 points), the transfer function $F(s)=\frac{U_{\text {out }}}{U_{\text {in }}}$ (3 points) and the voltage $U_{\mathrm{C}}(t)$, when the switch is closed at time $t=0$ (4 points). The component values are
$J=1 \mathrm{~mA} \quad R_{1}=3 \mathrm{k} \Omega \quad R_{2}=6 \mathrm{k} \Omega \quad C_{1}=C_{2}=10 \mathrm{nF} \quad C=100 \mu \mathrm{~F} \quad R=100 \mathrm{k} \Omega$
and the initial voltage of the capacitor C is $U_{\mathrm{C}}(0)=10 \mathrm{~V}$.

Assignment 2

The input voltage of the regulator can vary between $8 \mathrm{~V} \ldots 15 \mathrm{~V}$. The current taken by the load and the regulator is 500 mA . Calculate the value for the capacitor C_{1} (5 points) and the maximum reverse voltage for diodes $U_{\text {reverse }}$ (3 points). Calculate also the rms value for the output voltage of the transformer (2 points).

Bonus question (2 points): find the maximum current through the diodes in the rectifier bridge.

Assignment 3

a) Draw a circuit diagram for a circuit which fulfills the function $U_{\text {out }}=2 U_{\text {in }}$ (3 points).

b) Find the current I_{C} (3 points). The current gain of the transistor is $\beta=100$. c) Find the current I_{D}. For the MOSFET: $U_{\mathrm{T}}=3 \mathrm{~V}$ and $K=50 \frac{\mathrm{~mA}}{\mathrm{~V}^{2}}$ (3 points).
d) If the collector resistor R_{C} were $100 \mathrm{k} \Omega$, how large is I_{C} ? (1 point)

Assignment 4

a) Is the circuit a low-pass or a high-pass filter (1 points)? Calculate the transfer function for the circuit (3 points), find the characteristic frequency f_{0} (2 points) and the damping coefficient D (2 points).
b) A transfer function for a Bessel filter is

$$
F(s)=\frac{3}{s^{2}+3 s+3}
$$

Using this function, design a 2 nd order Bessel low-pass filter, for which the halfpower frequency is at $\omega=10$. Calculate the characteristic angular frequency ω_{0} (1 point) and the damping coefficient D for the filter (1 point).

Bonus question (2 points): Draw the circuit diagram (with component values) for the filter you designed.

