Answer all four questions!

Assignment 1

Find the current I (3 points), the transfer function $F(s) = \frac{U_{\text{out}}}{U_{\text{in}}}$ (3 points) and the voltage $U_{\text{C}}(t)$, when the switch is closed at time t = 0 (4 points). The component values are

 $J = 1 \text{ mA} \quad R_1 = 3 \text{ k}\Omega \quad R_2 = 6 \text{ k}\Omega \quad C_1 = C_2 = 10 \text{ nF} \quad C = 100 \,\mu\text{F} \quad R = 100 \,\text{k}\Omega$

and the initial voltage of the capacitor C is $U_{\rm C}(0) = 10 \,{\rm V}$.

Assignment 2

The input voltage of the regulator can vary between $8 V \dots 15 V$. The current taken by the load and the regulator is 500 mA. Calculate the value for the capacitor C_1 (5 points) and the maximum reverse voltage for diodes U_{reverse} (3 points). Calculate also the rms value for the output voltage of the transformer (2 points).

Bonus question (2 points): find the maximum current through the diodes in the rectifier bridge.

Assignment 3

a) Draw a circuit diagram for a circuit which fulfills the function $U_{\text{out}} = 2U_{\text{in}}$ (3 points).

b) Find the current $I_{\rm C}$ (3 points). The current gain of the transistor is $\beta = 100$.

c) Find the current $I_{\rm D}$. For the MOSFET: $U_{\rm T} = 3$ V and $K = 50 \frac{\text{mA}}{\text{V}^2}$ (3 points).

d) If the collector resistor $R_{\rm C}$ were $100 \,\mathrm{k}\Omega$, how large is $I_{\rm C}$? (1 point)

Assignment 4

a) Is the circuit a low-pass or a high-pass filter (1 points)? Calculate the transfer function for the circuit (3 points), find the characteristic frequency f_0 (2 points) and the damping coefficient D (2 points).

b) A transfer function for a Bessel filter is

$$F(s) = \frac{3}{s^2 + 3s + 3}.$$

Using this function, design a 2nd order Bessel low-pass filter, for which the halfpower frequency is at $\omega = 10$. Calculate the characteristic angular frequency ω_0 (1 point) and the damping coefficient *D* for the filter (1 point).

Bonus question (2 points): Draw the circuit diagram (with component values) for the filter you designed.