Mat-1.1620 Mathematics 2

Examination: 27.03.2007

No calculators or any tables are allowed in the exam.

Problem 1.

What is the domain of $f(x,y) = \frac{x-y}{x^2-y^2}$? Does f(x,y) have a limit as $(x,y) \to (1,1)$?

Can the domain of the function f be extended so that the resulting function is continuous at (1, 1)?

Problem 2.

Evaluate the following limits.

a)
$$\lim_{(x,y)\to(0,\pi/2)} \frac{\sin(xy)}{1-x};$$
 b) $\lim_{(x,y)\to(0,0)} \frac{x^2y^{16}}{x^2+y^6}.$

Problem 3.

Show that the function $u(x,t)=t^{-1/2}e^{-x^2/4t}$ satisfies the partial differential equation $\frac{\partial u}{\partial t}=\frac{\partial^2 u}{\partial x^2}$ (the one dimensional heat equation).

Problem 4.

Assume that the function z = f(x, y), where x = 2s + 3t and y = 3s - 2t, has continuous partial derivatives of all orders. Find

a)
$$\frac{\partial^2 z}{\partial s^2}$$
; b) $\frac{\partial^2 z}{\partial s \partial t}$; c) $\frac{\partial^2 z}{\partial t^2}$.

Problem 5.

Find the Jacobian matrix Df(1,3,3) for the transformation of \mathbb{R}^3 to \mathbb{R}^3 given by

$$f(x, y, z) = (x^2y, r^2z, y^2 - z^2)$$

and use the result to find an approximate value for f(0.99, 3.02, 2.97).

Problem 6.

The temperature at position (x, y) in a region of xy-plane is $T(x, y) = x^2e^{-y}$. In what direction at the point (2, 1) does the temperature increase most rapidly and what is the rate of increase of f in that direction?

1