S-87.3190 Computer Architecture (5 cr) Exam 14.5.2007 Please write clearly. Voit myös vastata suomeksi.

- 1a) With A (=F) and B (=2) and SUM = A + B. What is SUM (in Hexadecimal) if all three variables (A, B, SUM) are represented with 4 bits and:
 - sign magnitude?
 - ones complement?
 - unsigned?
 - twos complement?
 - encoded with a bias of 7 (as the exponent is encoded in floating point). (7p)
- b) Was there overflow in any of the cases in a)? (1p)
- c) IBM just unveiled the Power6 dual-core RISC architecture. Compared to equivalent RISC and x86 implementations, what is a superior feature in the Power6? (1p)
- d) AMD just revealed the Opteron quad-core architecture. Compared to Intel's current quad-core implementations, what is special about the implementation of the quad-core Opteron? (1p)
- 2. MIPS has the following instruction stages: Ifetch, Decode, Execute, Memory, Write Back.
- a) By using these stages, explain the concept of Pipelining (2p)
- b) What is the main advantage of pipelining (1p)
- c) Given the following MIPS code snippet (note that instruction #6 could be anything). Insert no-ops to insure correct operation. Assume no delayed branch, no forwarding units and no interlocked pipeline stages. (7p)

3 Suppose we have a 16KiB (1 KiB = 1024B) of data in a direct-mapped cache with 4 word (word = 32 bits) blocks. Show what happens in the cache when the addresses below are read from memory. The memory values are shown on the right.

1.0x00000014 2.0x00000034

3.0x00008014

4.0x0000801C

=> TURN OVER

Men	nory
Address (hex)	
***	****
00000010	a
00000014	b
00000018	C
0000001C	d
Cartina	
1. 2	***
00000030	е
00000034	f
00000038	q
0000003C	h

00008010	i
00008014	
00008018	k
0000801C	

4. For the two MIPS instructions shown below (instruction format also shown):

ADDU (Add Unsigned)

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

ADDI (Add Immediate)

ор	rs	rt	Immediate	
6 bits	5 bits	5 bits	16 bits	

- a) Explain the meaning of the instruction fields (3p)
- b) Construct a single-cycle 32-bit datapath which can implement the two instructions (include bit-widths, explain control signals) (7p)