1. (6 pts) The operation of the Atbash cipher on the English alphabet ($\mathrm{A}=0, \mathrm{~B}=1$ $, \ldots, \mathrm{Z}=25)$ is as follows: $C(x)=25-x \bmod 26$, for $x \in\{0,1,2, \ldots, 25\}$. Denote the key of the shift cipher by K. Then the ciphers commute if and only if $(25-x)+K \equiv$ $25-(x+K) \quad(\bmod 26)$, for all $x \in\{0,1,2, \ldots, 25\}$. This happens exactly if $2 K \equiv 0$ (mod 26). We get two solutions $K=0$ or $K=13$, from which $K=13$ is the nontrivial one. If $K=0$ then the Shift cipher has no effect, and the ciphers commute trivially.
2. See lectures.
3. (6 pts) The 8 -bit constants $C_{i}, i=8,9,16$ are computed in polynomial arithmetic modulo $m(x)=x^{8}+x^{4}+x^{3}+x+1$, as

$$
\begin{aligned}
C_{8} & =2^{7}=10000000_{2}=128 \\
C_{9} & =2^{8}=00011011_{2}=27 \\
C_{16} & =2^{15}=x^{7} \cdot x^{8}=x^{7}\left(x^{4}+x^{3}+x+1\right)=x^{5}+x^{3}+x^{2}+x+1=00101111_{2}=47
\end{aligned}
$$

4. Consider the RSA cryptosystem with modulus $n=101 \cdot 131=13231$.
(a) $(2 \mathrm{pts}) \phi(13231)=100 \cdot 130=13000$ and $\operatorname{gcd}(4563,13000)=13$. Therefore 4563 cannot be used as the encryption exponent for RSA with modulus 13231.
(b) (2 pts) The private decryption exponent d using $e=1323$ is computed as $d=e^{-1}=6387$ mod 13000 using the Extended Euclidean Algorithm.
(c) $(2 \mathrm{pts}) x_{1}=c^{d}=202^{6387} \bmod 101=0 \bmod 101$ and $x_{2}=c^{d}=202^{6387} \bmod$ $131=71^{17} \bmod 131$, where 202 is reduced modulo 131 and the exponent 6387 is reduced modulo 130. Using Square-and-Multiply Algorithm, we get that $x=92 \bmod 131$. Since $x_{1}=0$, the Chinese Remainder Theorem gives $x=$ $x_{2} \cdot\left(M_{2}^{-1} \bmod m_{1}\right) m_{2} \bmod M=92 \cdot 48 \cdot 101 \bmod 13231=9393$, where we used $\left(M_{2}^{-1} \bmod m_{1}\right)=101^{-1} \bmod 131=48$ computed using the Extended Euclidean Algorithm.
5. (6 pts) Now Alice computes the shared key as $K=660^{a} \bmod 1031$ and Bob computes it as $K=619^{b} \bmod 1031$. Knowing the subgroup consisting of 5 elements $\left\{1,518,264=518^{2}, 660=518^{3}, 619=518^{4}\right\}$ Carol gets that $K=518^{3 a}=518^{4 b} \bmod$ 1031. Hence K is also in the small subgroup, and the only integers $a, b \in\{0,1,2,3,4\}$ that satisfy $3 a=4 b \bmod 5$ are $a=4$ and $b=3$, from which Carol gets $K=518^{12}=$ $518^{2}=264$.
