T-61.261 Principles of Neural Computing Examination 13.5.2005

Raivio

- 1. Answer briefly to the following questions or items (using a few lines or sentences only for each question):
 - (a) What is the main deficiency of a single-layer perceptron?
 - (b) What learning vector quantization (LVQ) is doing?
 - (c) Why regularization is often needed in radial-basis function (RBF) networks?
 - (d) How a MLP (multilayer perceptron) network trained using the back-propagation algorithm can be applied to unsupervised learning (for example to data compression)?
 - (e) What kind of neighborhood function is typically used in training the self-organizing map (SOM)?
 - (f) How a recurrent neural network differs from a customary feedforward network?
- 2. What heuristic methods do you know for making the back-propagation algorithm to perform better? It suffices to explain briefly each method.
- 3. Consider the following interpolation problem which constitutes the mathematical background for radial-basis function (RBF) networks: Find a function $F(\mathbf{x})$ of the form

$$F(\mathbf{x}) = \sum_{i=1}^{M} w_i \varphi(\parallel \mathbf{x} - \mathbf{t}_i \parallel)$$

satisfying the conditions

$$F(\mathbf{x}_j) = d_j, \ \ j = 1, 2, \ldots, N.$$

Here \mathbf{x}_j , $j=1,2,\ldots,N$, are known training input vectors, and the scalar numbers d_j are the respective outputs (desired responses). The vectors \mathbf{t}_i , $i=1,2,\ldots,M$, are the centers of the radial basis functions $\varphi(\parallel \mathbf{x}-\mathbf{t}_i \parallel)$, and w_i , $i=1,2,\ldots,M$, are the respective scalar weights.

- (a) Express the problem in matrix-vector form (using a suitable notation).
- (b) Assume first that there are as many (N=M) centers \mathbf{t}_i as training pairs (\mathbf{x}_j,d_j) . Find the optimal weights $w_i,\ i=1,2,\ldots,M$.
- (c) Assume now that there are more training pairs as centers, so that M < N. Find the best approximate solution to the interpolation problem in the least-squares error sense.
- 4. Consider the cost function

$$\mathcal{E}(\mathbf{w}) = 2w_1^2 - w_1w_2 + 3w_2^2 + 7$$

where w_1 and w_2 are the components of the 2-dimensional parameter vector \mathbf{w} .

- (a) Which value of the parameter vector \mathbf{w} minimizes the cost function $\mathcal{E}(\mathbf{w})$?
- (b) Construct a steepest descent algorithm for minimizing the cost function.
- (c) Construct Newton's algorithm for minimizing the cost function.
- (d) How quickly Newton's algorithm converges?