AS-74.115 NEURO-FUZZY Computing in Automation

Tentti 14.5.2007

Heikki Koivo

All questions are of equal value.

Use of books or lecture notes is not allowed.

- a) Define a fuzzy set.
- b) Demonstrate fuzzy reasoning with an example. Draw a figure to indicate how the reasoning proceeds.
- 2) a) Explain what is the basic difference between Mamdani type of reasoning compared with Sugeno type of reasoning
 - b) Give an example of Sugeno type of rule and then derive an analytical relationship between the input and output. For simplicity, use scalar input-output system. Make any necessary assumptions you need.
- (3) Give an example of a rule base of PD or PI type of fuzzy controller.
- 4) a) Name at least three types of neural network architectures and describe them for example using drawings.
 - b) Compare the characteristics of the neural networks that you mentioned in a).
- a) Suppose you have four weight vectors of unit length $\mathbf{w}^j = \left[w_1^j, w_2^j, w_3^j\right], j = 1,...,4$ as shown in the figure (left).

A new input vector \mathbf{x}^{new} is introduced (Figure on the right). Explain how competitive learning works.

- b) How does Kohonen Self-Organizing Map differ from competitive learning.
- 6) Explain the procedure of a genetic algorithm.