2. Let $\mathbf{n} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ be a normal vector to the plane, and the point $P_0 = (1, 2, -1)$ belongs to the plane. Derive with explanations the equation of the plane (in the standard form). Draw also a picture to explain your derivations.

a) Does the sequence converge: $\left\{\sqrt{(4n^2-n)}-2n\right\}$, $n=1,2,\ldots$? Why?

b) Explain what is meant by the convergence of the series $\sum_{n=1}^{\infty} a_n$?

c) Does the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{5^{2n}+n}}$ converge? Why?

- 3. Let $\begin{cases} x=1+t\\ y=t & t\in \mathbf{R}\\ z=2-t \end{cases}$ and $\begin{cases} x=-1+2t\\ y=1+t & t\in \mathbf{R} \end{cases}.$

Suomeksi toisella puolella

- scalar projection of the vector $2\mathbf{i} \mathbf{j} + \mathbf{k}$ on this vector.

 4. a) Calculate the arc-length of the curve
- $\mathbf{r}(t) = 2\cos(cs)\mathbf{i} + cs\mathbf{j} + 2\sin(cs)\mathbf{k}$, when $0 \le t \le T$. How c should be chosen to have the arc-length parametrization?
- b) Consider the curve in a), and let c be chosen so that we have the arc-length parametrization. Calculate tangent and normal vectors $\hat{\mathbf{T}}$, $\hat{\mathbf{N}}$ as well as the radius of curvature.