Mat-1.1220 Basic course in mathematics S2

3. midterm 2008

Please fill in clearly on every sheet the data on you and the examination. On Examination code mark course code, title and text mid-term or final examination. Study programmes are ARK, AUT, BIO, EST, ENE, GMA, INF, KEM, KJO, KTA, KON, MAK, MAR, PUU, RAK, TFY, TIK, TLT, TUO, YHD.

You may use a calculator.

- 1. By using the Lagrange multiplier method find the minimum value of function $f(x,y) = x^2 + y^2$ under condition $x^2y = 1$. (To obtain full points you are required to use the multiplier method.)
 - 2. Surfaces

$$x^2 + y^2 = 4$$
, $y - z + 2 = 0$, $z = 0$,

enclose a domain in \mathbb{R}^3 .

- a) Sketch/describe the domain.
- b) Calculate the volume of the domain.
- 3. Let $\mathbf{F} \colon \mathbf{R}^3 \to \mathbf{R}^3$ be the vector field

$$\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + yx\mathbf{k}.$$

- a) If F curlfree?
- b) Is F sourceless?
- c) Prove that F is conservative, and find a scalar potential for F.
- d) Evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ when \mathcal{C} is a smooth curve from (0,0,0) to (1,1,1).
- 4. Let **F** be the vector field $\mathbf{F} = 3y\mathbf{i} xz\mathbf{j} + yz^2\mathbf{k}$ and let \mathcal{S} be the part of the paraboloid $z = \frac{1}{2}(x^2 + y^2)$ that is below the plane z = 2. Evaluate $\iint_{\mathcal{S}} \nabla \times \mathbf{F} \cdot d\mathbf{S}$ using Stokes theorem, when \mathcal{S} is oriented so that the normal points downwards.