Exam: T-106.1203 Basics of Programming L

Date: May 7™, 2008

Note! This is the exam for the course Basics of Programming L
There is a separate question sheet for T-106.1200 Basics of Programming T.

General Info

The questions 1 and 2 are obligatory. You must get at least one point from each of these two questions
in order to pass the exam. On the other hand, if you get at least one point from each of the obligatory
questions, you will pass the exam with at least a grade of 1. In this case, your exam grade will be
determined by the total sum of points from all questions.

Question 1 (2 points)

Examine the classes given in the attachment. The class ParkinglLot represents parking lots, which
have a number of parking spaces. Each parking space can be used for parking a single car and is
associated with a parking meter, which keeps track of how long a car has been parked at the space.
Parking meters are represented by class parkingMeter and cars by class Car. The class Test can be
used to experiment with the other three classes.

What does the program print out when the main method in class Test is executed?

The purpose of this question is to make sure that every student who passes the course understands
the basics of Java syntax and program execution. The question is obligatory and you must receive at
least one point from it to pass the exam. This question is graded on a scale of: 0 (failed) / 1 (passed) /
2 (excellent).

Question 2 (2 points)

Write a Java method, which:

« receives as a parameter a list of strings
« returns the number of such strings in the given list of strings, whose length is greater than the
average length of all strings in the given list of strings.

For example, if the parameter list contains the strings "a", "muu", "ananasakaama”, "lordi", and
"humppa", then the average tength is 5.4. Two of the strings are longer than that, so the method
should return the number two.

The purpose of this question is to make sure that every student who passes the course has at least
some basic skills in writing Java program code. The question is obligatory and you must receive at
least one point from it to pass the exam. This question is graded on a scale of: 0 (failed) / 1 (passed) /

2 (excellent).

Question 3 (4 points)

State your opinion of the following claims related to Java programming. Explain your reasoning! You do
not need to strictly agree or disagree with a claim - a valid justification for your opinion is the most
important thing in terms of grading this question.

a) Claim: The scope of any Java variable is unambiguously defined by use of visibility modifiers
(e.g. public) in front of the variable’s definition.

b) Let us take a look at the method:
public static int doStuff (int number, int another) {
if {(number < another} {
return 1;
} else {
return 2 + doStuff (number - 1, another + 1);

}
}
Claim: When this method is called with the parameter values 6 and 1, a so-called infinite
recursion occurs and eventually depletes the memory resources available to the program.

c) Claim: The use of the intermediate language Bytecode makes it possible to run the same Java
virtual machine program (JVM) on computers of many kinds.

d) Claim: The purpose of casting (also known as type casting) is to change the runtime type (also
known as the dynamic type) of a value to be different from the value's static type.

The primary purpose of this question (and the following one) is to assess whether you are equipped to
take part in dialogue on introductory programming topics and formulate and justify your reasoning
about such matters. Each item in this question is worth one point,

Question 4 (2 points)

Briefly describe what are checked exceptions. How do they differ from other kinds of exceptions? Give
at least one example that illustrates that you understand the concept of checked exceptions.

3: public class ParkingLot ({

4z

St

6:

7:

8:

9:
10:
1l:
12:
13:
14:
19:
16z
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
S56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:

private ParkingMeter{] meters;
private int count;

// container
// stepper

public ParkingLot{int size) ({
this.meters = new ParkingMeter{size];
for (int space = 0; space < this.getSize(); spacet+) { // space: steppei
this.meters([space] = new ParkingMeter();

}

this.count = 0;

public int getSize() {
return this.meters.length;

public boolean hasCar(int space) ({
return this.getCar(space) != null;

public int getCarCount() {
return this.count;

public Car getCar(int space) ({
if (this.hasIndex(space}) {
return this.meters[space].getCar();
} else {
return null;

private boolean hasIndex(int space) (
return space >= 0 && space < this.getSize();

public int park(Car car) {
return this.park(car, this.findSpace());

private int findSpace() {
for (int space = 0; space < this.getSize(); space++) { // space: stepper
if (tthis.hasCar(space)) {
return space;

}

return -1;

68:
69:
70:
71:

73:
74:

76:

122:
123:
124:
125:
126:
127:
128:
129:
130:
131:

133:
134:

public int park(Car car, int space) {
if (this.find(car) < 0 && this.haslndex(space) &&
this.meters{space}.start(car)) {
this.count++;
return space;
} else {
return -1;

public int depart(Car car) {
return this.depart(this.find(car));

private int find(Car car) {
for (int space = 0; space < this.getSize(); space++) { // space: stepper
if (this.getCar(space) == car) {
return space;

}

return -1;

public int depart(int space) {
if (this.hasCar(space)) {
this.count--;
return this.meters[spacel.free();
} else {
return -1;

public void advanceOneHour() {
for (ParkingMeter meter : this.meters) { // meter: most-recent holder
meter.advanceHours(1l);

public String getDescription() {
String description = ""; // description: gatherer
for (ParkingMeter meter : this.meters) { // meter: most-recent holder
description += meter.getDescription() + “\n";
}

return description;

135:

136:

137: public class ParkingMeter {
138:

139: private Car currentCar;
140: private int hourCount; // gatherer
141:

142:

143: public ParkingMeter() {

144: this.currentCar = null;

145: this.hourCount = 0;

146:)}

147:

148:

149: public boolean start(Car newCar) ({
150 if (this.currentCar == null) {
151: this.currentCar = newCar;

152: this.hourCount = 1;

153: return true;

154: } else {

155: return false;

156: }

157: }

158:

159:

160: public void advanceHours(int hours) {
161: if (this.currentCar != null) {
162: this.hourCount += hours;

163: }

164: }

165:

166:

167: public int free() {

168: this.currentCar = null;

169: int hours = this.hourCount; // temporary
170: this.hourCount = 0;

171: return hours;

172: }

173:

174:

175z public Car getCar() {

176: return this.currentCar;

177: }

178z

179:

180: public String getDescription() {
181: if (this.getCar() == null) {
182 return "(empty spacej";

183: } else {

184: return this.getCar().getModel() + ", hours parked:
185: }

186: }

187:

188: }

189:

190:

191:

192:

193:

194:

195:

196:

197:

198:

199:

200:

201:

// most-recent holder

+ this.hourCount;

202:

203:

204: public class Car {

205:

206: private String model;

207:

208:

209: public Car(String model) {

210 this.model = model;

211: }

212:

213:

214: public String getModel() {

215: return this.model;

216: }

217

218: }

219:

2203

221:

222:

223:

224:

225: public class Test {

226:

227: public static void main(String{) args) {
228: ParkingLot parkingLot = new Parkinglot(3);
229: Car carl = new Car("Honda");

230: Car carZ2 = new Car{"Volvo");

231: Car car3 = new Car("Mercedes');

232: Car card = new Car("Saab");

233: Car car5 = new Car(“BMW");

234:

235: System.out.printlin(parkingLot.getCarCount());
236: System.out.println();

237: System.out.println(parkinglot.park(carl, 2});
238: System.out.println(parkingLot.park(car2});
239: System.out.println(parkingLot.park(car3});
240: System.out.println(parkinglot.park(car4));
241: System.out.println(parkinglot.getDescription());
242:

243: parkingLot.advanceOneHour();

244: System.out.println(parkingLot.depart(0));
245: parkingLot.advanceOneHour();

246: System.out.println(parkingLot.depart(car2));
247: System.out.printlin{parkinglLot.depart(carl));
248: System.out.println(parkinglot.park(cars));
249: System.out.println(parkinglot.getDescription());
250: }

251: }

252:

253:

254:

255:

256:

257:

258:

259:

260:

261:

262:

263:

264:

265:

266:

267:

268:

