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1. Let A =





1 2 2
3 6 9
2 8 9



. Use the Gaussian elimination with partial pivoting to compute

P,L, and U s.t. PA = LU where L is unit lower triangular, U upper triangular and P a
permutation. (Hint: U should be integers now!)

2. Let A ∈ R
m×m be tridiagonal and symmetric.

(a) In the QR factorization A = QR, which entries of R are nonzero?

(b) Show that the tridiagonal structure is recovered when the product RQ is formed.

3. Let A ∈ C
m×m. Show that

(a) there exist (column) vectors uj, vj ∈ C
m, j = 1, . . . ,m such that

I − zA = (I − zumv∗

m) · · · (I − zu2v
∗

1
)(I − zu1v

∗

1
) ∀z ∈ C.

(b) The inner products u∗

jvj are the eigenvalues of A.

Hint: Schur.

4. Consider the problem Ax = b.

(a) Explain the Arnoldi iteration

(b) Describe how is Arnoldi related to the GMRES least squares problem

‖H̃ny − ‖b‖e1‖ = min . (A)

(c) Describe an O(n2) algorithm to solve (A) based on QR factorization by Givens rota-
tions.


