T-61.5140 Machine Learning: Advanced Probabilistic Methods

Hollmén, Raiko
Examination, 15th of May, 2008 from 9 to 12 o'clock.
In order to pass the course and earn 5 ECTS credit points, you must also pass the term project. Results of this examination are valid for one year after the examination date. Information for Finnish speakers: Voit vastata kysymyksiin myös suomeksi, kysymykset on ainoastaan englannin kielellä. Information for Swedish speakers: Du får också svara på svenska, frågorna finns dock endast på engelska.

1. Define the following terms shortly:
a) conditional independence
b) treewidth
c) d-separation
d) Markov Blanket
e) complete-data likelihood
f) proposal distribution
2. Given a Hidden Markov Model (HMM) for a sequence of observations $Y=\left(y_{1}, \ldots, y_{t}\right)$, show that the predictive distribution of the observations y_{t} follows a mixture distribution.
3. Write the algorithm for Gibbs sampling and write the distributions to sample from in the case of $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$.
4. Write the probability $p(\mathbf{x})$ for the finite mixture model of multivariate Bernoulli distributions, name the parts of the mixture model, and derive the E-step and the Mstep of the Expectation-Maximization (EM) algorithm.
Hint: The probability for a d-dimensional vector of 0-1 data can be calculated with the following equation: $p(\mathbf{x} \mid \theta)=\prod_{i=1}^{d} \theta_{i}^{x_{i}}\left(1-\theta_{i}\right)^{1-x_{i}}$.
5. For the Bayesian network that decomposes the joint probability as in $p\left(x_{1}, \ldots, x_{5}\right)=$ $p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{5} \mid x_{4}\right)$, draw the corresponding graphical representation. Assuming all the variables have discrete values $x_{i} \in\{0,1,2\}$, give the sizes of the tables representing the probabilities for the conditional distributions. Moreover, derive the junction tree representation (and name the steps). Draw the resulting junction tree.
