Tfy-125.321 LASER TECHNOLOGY & OPTICS | Midterm | 30.10.2007

Write your answers either in Finnish, Swedish or English.

1. Consider a gas of two-level atoms interacting with resonant light of frequency ν and intensity I. The number density of the atoms is N. Derive the steady-state value for the absorption coefficient

$$\alpha = -\sigma(N_2 - N_1),$$

where σ denotes the cross-section for the stimulated transitions $[B\rho(v) = \sigma I/hv]$ and N_2 and N_1 are the population densities of the upper and lower level, respectively. Write your answer in the form

$$\alpha = \frac{\alpha_0}{1 + I/I_S},$$

and identify the constants α_0 and I_S . Sketch α as a function of I and interpret the result.

- 2. a) What is a half-wave plate? What does it do and what is it used for?
 - b) How thick should a half-wave plate made of mica be in an application where laser light of 633 nm is being used? Appropriate refractive indices for mica are 1.599 and 1.594.
- 3. Explain laser mode structure. How can a laser be made to operate in a
 - (i) single longitudinal mode
 - (ii) single transverse mode.
- 4. a) Why is it easier to achieve population inversion in a 4-level system than in a 3-level system?
 - b) An excimer molecule is stable only in the excited state. Is it good or bad as far as laser operation is concerned? Motivate your answer.
 - c) Gas lasers are not pumped with flash lamp. Why is that?
 - d) Solid state lasers based on transition metal ions typically have a much broader gain bandwidth than those where the dopant ion is a rare earth metal. Why?
 - e) The lasing threshold for a homojunction diode laser is much higher than that of a heterojunction laser. Explain.
 - f) CW operation of dye laser requires special procedures. Give a physical explanation.

5. The macroscopic Maxwell's equations for linear, isotropic, dielectric and nonmagnetic medium are

$$\nabla \cdot \mathbf{D} = \rho_f \quad \nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad \nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t},$$

where $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$, $\mathbf{B} = \mu_0 \mathbf{H}$, and $\mathbf{P} = \varepsilon_0 \chi \mathbf{E}$.

- (a) Derive the wave equation for the electric field with polarization **P** acting as a source term. Show that a plane wave $\mathbf{E} = \mathbf{E}_0 \exp \left[i \left(\mathbf{k} \cdot \mathbf{r} \omega t \right) \right]$ is a solution for the wave equation. [Hint: $\nabla \times \nabla \times \mathbf{E} = \nabla \left(\nabla \cdot \mathbf{E} \right) \nabla^2 \mathbf{E}$].
- (b) How is the refractive index n related to wave propagation in the medium? Show that in the case considered in (a), the refractive index can be expressed as $n = \sqrt{1+\chi}$.