T-79.4501 Cryptography and Data Security

EXAM
Tuesday, October 28, 2008
SOLUTIONS

1. Let us denote the encryption key

$$
\left(\begin{array}{cc}
x^{2} & 1 \\
1 & x+1
\end{array}\right)
$$

by K.
a) $(3 \mathrm{pts})$

$$
K\binom{x^{2}}{x+1}=\binom{x^{4}+x+1}{x^{2}+(x+1)^{2}}=\binom{0}{1}
$$

b) (3 pts) The task is to find the inverse matrix K^{-1} of K such that $K K^{-1}=K^{-1} K=I$ where I is the 2×2 identity matrix. By matrix algebra

$$
K^{-1}=(\operatorname{det} K)^{-1} K^{T}=(\operatorname{det} K)^{-1}\left(\begin{array}{cc}
x+1 & 1 \\
1 & x^{2}
\end{array}\right)
$$

Now we have at least the following two possibilities to continue:
(1) We have det $K=x^{3}+x^{2}+1$ and can obtain its inverse x^{2} using the Extended Euclidean algorithm.
(2) By a) we know that the second column of K^{-1} is $\left(x^{2}, x+1\right)^{T}$. Hence the multiplier $(\operatorname{det} K)^{-1}$ must be equal to x^{2}.
We get

$$
K^{-1}=\left(\begin{array}{cc}
x^{3}+x^{2} & x^{2} \\
x^{2} & x+1
\end{array}\right)
$$

2. In CBC encryption, $C_{i}=E_{K}\left(P_{i} \oplus C_{i-1}\right)$, for all $i=1,2, \ldots, t$, where $C_{0}=I V$. Then decryption is computed as $P_{i}=D_{K}\left(C_{i}\right) \oplus C_{i-1}$. Error occurs in exactly one C_{j}, where $0 \leq j<t$. We denote the erroneous ciphertext by C_{j}^{\prime}.
a) (3 pts) Exactly two decryptions depend on C_{j}^{\prime} :

$$
\begin{aligned}
P_{j}^{\prime} & =D_{K}\left(C_{j}^{\prime}\right) \oplus C_{j-1} \\
P_{j+1}^{\prime} & =D_{K}\left(C_{j+1}\right) \oplus C_{j}^{\prime}
\end{aligned}
$$

where we have denoted the erroneous decryptions by P_{j}^{\prime} and P_{j+1}^{\prime}.
b) (3 pts) The differences in bits between the original plaintexts and the received erroneous plaintexts are:

$$
\begin{aligned}
P_{j} \oplus P_{j}^{\prime} & =D_{K}\left(C_{j}\right) \oplus C_{j-1} \oplus D_{K}\left(C_{j}^{\prime}\right) \oplus C_{j-1}=D_{K}\left(C_{j}\right) \oplus D_{K}\left(C_{j}^{\prime}\right) \text { and } \\
P_{j+1} \oplus P_{j+1}^{\prime} & =D_{K}\left(C_{j+1}\right) \oplus C_{j} \oplus D_{K}\left(C_{j+1}\right) \oplus C_{j}^{\prime}=C_{j} \oplus C_{j}^{\prime}
\end{aligned}
$$

Hence the error in block P_{j} looks random assuming that D_{K} is the decryoption of a strong block cipher. The error in P_{j+1} is exactly in those bits that are erroneous in C_{j}^{\prime}.
3. a) To use the Chinese Remainder Theorem we denote as usual $m_{1}=3, m_{2}=5, m_{3}=7$, $M=m_{1} m_{2} m_{3}=105$, and

$$
\begin{aligned}
& M_{1}=m_{2} m_{3}=35 \\
& M_{2}=m_{1} m_{3}=21 \\
& M_{3}=m_{1} m_{2}=15
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=M_{1}^{-1} \bmod m_{1}=35^{-1} \bmod 3=2^{-1} \bmod 3=2 \\
& u_{2}=M_{2}^{-1} \bmod m_{2}=21^{-1} \bmod 5=1^{-1} \bmod 5=1 \\
& u_{3}=M_{3}^{-1} \bmod m_{3}=15^{-1} \bmod 7=1^{-1} \bmod 7=1 .
\end{aligned}
$$

Then

$$
x=\sum_{i=1}^{3} x_{i} u_{i} M_{i}=2 \cdot 2 \cdot 35+3 \cdot 1 \cdot 21+2 \cdot 1 \cdot 15=233 \equiv 23 \quad(\bmod 105) .
$$

b) The RSA modulus is $n=105=3 \cdot 5 \cdot 7$. We compute $\phi(n)=2 \cdot 4 \cdot 6=48$. Then

$$
d=e^{-1} \bmod \phi(n)=7^{-1} \bmod 48=7
$$

as $7 \cdot 7=49 \equiv 1 \quad(\bmod 48)$.
4. (6 pts) For the Man-in-the-Middle Attack on the basic (unauthenticated) Diffie-Hellman key exchange protocol see Lecture 9 Slide 10. The small subgroup attack discussed in Homework 5 Problem 4 can also be considered as a Man-in-the-Middle Attack, since it involves an active attacker, who modifies the messages. It differs from the basic Man-in-the-Middle Attack in two aspects. First, it is only possible if the group has a small subgroup, where the attacker can force the final key to belong. Secondly, it can be applied also to the authenticated Diffie-Hellman key exchange.
5. (6 pts) The 64 -bit output Y from the counter mode PRNG is computed as $Y=E_{K}(X)$ where X is a 64 -bit counter value. We denote the initial counter value by X_{0}. Starting from this value, the counter X will run through all 64 -bit values until it takes value X_{0} again. Encryption of 64 -bit blocks using Triple DES, which is a 64 -bit block cipher, is bijective. Therefore the output Y from the PRNG will run through all 64 -bit numbers, that is, 2^{64} different values without repetition, until it takes value $E_{K}\left(X_{0}\right)$ again.
The true random number generator selects each 64-bit output uniformly at random from all possible 2^{64} outputs. Hence at each time it is there is a chance that a previously selected value is selected again.
Therefore, is a repetition occurs in a sequence generated by a black box generator before 2^{64} numbers have been generated, we know that the black box contains a true random number generator.
By Birthday Paradox, the probability that a repetition is detected after $\sqrt{2^{64}}=2^{32}$ values have been generated is about $1 / 2=50 \%$.

