T-61.3050 MACHINE LEARNING: BASIC PRINCIPLES, EXAMINATION
3 September 2008 at 9-12.

To pass the course you must also pass the term project. Results of this exami-
nation are valid for one year after the examination date.

To get full points you must choose and complete five of the six problems.
Only the first five answers read by the examiner will be graded.

This examination has six problems (of which you must choose five) and two
pages. You can answer in Finnish, Swedish or English. Please write clearly
and leave a wide left or right margin. You can have a calculator, with memory
erased. No other extra material is allowed.

An important grading criterion is understandability: in addition to being com-
plete and correct, your answer should be understandable to your fellow student
who has the necessary prerequisite knowledge but has not yet taken the course.

The results will be announced in Noppa on 3 October 2008, at latest. No other
announcements will be sent.

You can keep this paper.

1. Model selection. Assume that you have at your disposal a training data.
set X = {(r*,x")}L,, where r* € {0,1} is a binary class and x* € R is a
covariate vector of k real variables. Consider the problem of constructing
a predictor or classifier h(x) for the class r for data vectors x that do not
appear in the training data.

a) Explain concepts “inductive bias”, “underfitting”, “overfitting”, “hy-
g
pothesis space” and “generalization” and their relation in the frame-
work of this problem.

(b) Give an example of a realistic hypothesis space for this problem.
(c) How could you estimate the prediction error for yet unseen data?

2. Bayesian probability theory. Consider the problem of finding the probabil-
ity that a coin fip gives “heads” given a set of observed coin flips (assume
that the probability of “heads” or “tails” can also be something else than
% of a fair coin).

(a) Demonstrate at least two prior probability densities for this problem,
compare them and explain their interpretation.

(b) Describe (using relevant concepts) how you could find the probability
of getting “heads” after observing NV coin flips for various choices of
prior probability density. Write down the essential formulae.

(c) Define the maximum likelihood (ML) and maximum a posteriori
(MAP) estimates and compare their properties.

3. Regression. Consider the problem of linear regression using least squares
estimates, given a data set of X = {(r*,x!)}L,, where ' € R is the
dependent variable and x* € R is the covariate vector of k real variables.
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Figure 1: Toy data set for problem 5.

(a) Define a likelihood function and use it to derive the error function to
be maximized.

(b) Explain the difference between linear and polynomial regression.
4. Principal component analysis. Assume that your data X is N d-dimensional
real vectors, that is, X = {x*}{*;, x* € R%. Consider the problem of re-

ducing the dimensionality of your data to k dimensions, where k < d,
using principal component analysis (PCA).

(a) Write down in pseudocode how you could find the PCA representa-
tion of the data in k dimensions. (Hint: it is probably easiest to use
matrix representation here. You can assume that you have access to
a function that gives eigenvectors and eigenvalues of a matrix.)

(b) How can you interpret the PCA dimension reduction geometrically?

(c) How can you choose k7 List some methods.

5. Classification trees.

(a) What is a classification tree? Define it.

(b) Describe the ID3 algorithmn. What else do you need to take into
account when constructing a classification tree using a real world
data?

(c) Sketch the running of the ID3 algorithm with a toy data set of Figure
1 (binary classification task in R2).

6. Logistic discrimination.

(a) Define logistic discrimination. What can it be used for?
(b) Derive the error function to be maximized in logistic discrimination.

(¢) Discuss the ways of optimizing this cost function. What do you need
to take into account?



