T-61.5130 Machine Learning and Neural Networks Examination 19th December 2007/Karhunen

- 1. Answer briefly (using a few lines) to the following questions:
 - (a) What for is Oja's rule used in neural computing?
 - (b) What means the search-and-converge stategy?
 - (c) Explain briefly the bias-variance decomposition.
 - (d) What measures Kullback-Leibler divergence?
 - (e) Explain briefly ϵ -insensitive cost function.
 - (f) What is a Voronoi cell?
- 2. Assume that the relationship between the input vector \mathbf{x} and the desired response (output) vector \mathbf{d} is of the form

$$\mathbf{d} = \mathbf{h}(\mathbf{x}) + \mathbf{e}$$

where $\mathbf{h}(\mathbf{x})$ is the true mapping between \mathbf{x} and \mathbf{d} and \mathbf{e} is the error or noise vector. Consider modeling the unknown true mapping $\mathbf{h}(\mathbf{x})$ by the output $\mathbf{y}(\mathbf{x}, \mathbf{w})$ of a neural network, where the vector \mathbf{w} contains all the adjustable weights of the neural network. Assume that you have at your disposal N training pairs $(\mathbf{x}_i, \mathbf{d}_i)$ of the mapping. Show that if the training pairs are independent, and the noise vector \mathbf{e} is Gaussian with zero mean and covariance matrix $\sigma^2 \mathbf{I}$, the standard least-squares method and maximum likelihood method provide the same results.

- 3. Compare multilayer perceptron networks and support vector machines. Which general properties they have? What are their benefits and drawbacks when compared with each other?
- 4. The figure on the reverse side shows an example of a second-order recurrent network including some notation. Write out the dynamical equation(s) describing the operation of the network and its input-output mapping. The multiplier nodes, denoted by the symbol ⊗, multiply their inputs. The activation function used is the standard logistic sigmoidal function. Include also bias terms which are not shown in the figure for clarity.

