1. Charge +q is distributed evenly on an arc with radius R. Calculate the magnitude and direction of the electric field in the origin.

- 2. A dielectric sphere has a constant charge density. The total charge of the sphere with radius R is +Q.
 - a) Calculate using Gauss's law the electric field inside and outside the sphere. (4 p.)
 - b) Calculate the electric energy density in the center and on the surface of the sphere. (2 p.)
- 3. A toroid having a radius of 0,500 m and 500 windings carries a current of I = 1,5 A. The inside of the toroid is filled with magnetic material where the magnetic flux density is B = 1,5 T. Calculate a) the magnetic permeability and b) the magnetic susceptibility of the material.
- 4. Homogenous electric field \overline{E} and homogenous magnetic field \overline{B} are detected in the same spot in vacuum. The energy densities of the fields are equal. Calculate E if $B = 1, 2 \cdot 10^{-5}$ T.
- 5. Unpolarised light hits the planar surface of a glass plate at an angle of 57°. The reflected light is totally linearly polarised. What is the refractive index of the glass? Calculate also the refraction angle.
- 6. A monochromatic beam of a semiconductor laser with a wavelength of 640 nm is directed into a narrow slit having a width of 0,10 mm. The Fraunhofer diffraction pattern is formed onto a screen at a distance of 35 m from the slit. Calculate the width of the central intensity maximum (the separation of the minimums next to the maximum).

Constants: mass $m_e = 9.11 \cdot 10^{-31}$ kg and charge $e = 1.60 \cdot 10^{-19}$ C of an electron, mass of proton $m_p = 1.67 \cdot 10^{-27}$ kg, $c = 3.00 \cdot 10^8$ m/s, $\mu_\theta = 4\pi \cdot 10^{-7}$ Tm/A, $\varepsilon_\theta = 8.85 \cdot 10^{-12}$ F/m, $h = 6.635 \cdot 10^{-34}$ Js

Name, student number, degree programme (EST, TLT, AUT, BIO, ...), course code and the date on each examination paper.