S-72.620 Short questions for closed book exam part

GENERAL

- 1. List n quality parameters for circuit switched connections in a cellular radio network.
 - Blocking probability
 - Call dropping probability
 - Signal outage probability
 - Interference outage probability
 - Transmission quality (BER/FER)
- 2. List 2 quality parameters for packet switched connections in a cellular radio network.
 - Throughput
 - Delay
- 3. List n starting points for cellular radio network planning.
 - System specification
 - Equipment specification
 - Existing infrastructure
 - Service area topography
 - Desired grade of service
 - Available frequency band
 - Traffic distribution
- 4. Which 3 objectives for cellular radio network planning are mentioned
 - To obtain sufficient coverage over the entire service area to ensure that high quality voice and data services with low error rates can be offered to the subscribers.
 - To give possibility to offer the subscriber traffic network capacity with sufficiently low blocking.
 - To enable an economical network implementation when the service is established and a controlled network expansion during the life cycle of the network.

CAPACITY PLANNING

- 5. Give a definition of the capacity of a cellular radio network.
 - Maximum number of ongoing calls/cell of calls/service area.
 - Offered traffic that can be served with a certain blocking probability. Blocking probability is a QoS requirement defined by the operator
 - Served traffic with a given blocking probability
 - Amount of transmitted data with given QoS requirement per time, bandwidth and service area unit.
- 6. List three factors that have an impact on the offered traffic in a cell.
 - Number of potential users and their distribution over the service area
 - Penetration factor.
 - Time of busy hour.
 - Subscriber behaviour
- 7. Which condition must the offered traffic fulfill to make the Erlang B-blocking model valid
 - Arriving calls are Poisson-distributed
 - Call duration is Exponentially-distributed
 - Blocked calls are dropped, no queuing.
- 8. Define the quantities in the Erlang B-blocking formula:

$$B = \frac{\frac{T^{N}}{N!}}{\sum_{n=0}^{N} \frac{T^{n}}{n!}}$$

- B, blocking probability
- T, offered traffic (Erlang)
- N. number of traffic channels
- 9. What kind of cell shapes giving full coverage are used in theoretical radio network investigations.
 - Hexagonal structure

COVERAGE PLANNING

- 10. Which components are typically included in the base station antenna feeder system.
 - Cable
 - Connectors
 - Jumpers.
- 11. Which are two main approaches to the coverage planning problem.
 - Where to put the cell border to fulfill the coverage probability target with given radio link parameters.
 - How to choose the radio link parameters to fulfill the coverage probability target for a given cell size.
- 12. Name two average path loss models, give also the cellular environment where they are usable
 - Hata model, outdoor macrocells
 - Dual-slope mode, outdoor microcell
- 13. Explain with words which three terms constitute the COST231 Walfisch-Ikegami average path loss model.
 - Free space loss between MS and BS
 - Roof to street diffraction loss
 - Multiscreen diffraction over the roof between MS and BS

FREQUENCY PLANNING

- 14. Explain the term protection ratio of radio receiver
 - Average carrier to average interference power ratio still giving the required quality of service.
- 15. Explain the term interference outage
 - Interfering signals are stronger than protection ratio. This leads to degrading of the quality of service.
- 16. Explain the term frequency reuse factor
 - Frequency reuse factor defines the range after the same frequency can be used again.