S-72.341 Coding Methods

1. (6p.) (Tutorial) An (8,4) binary linear block code C has parity-check equations

$$v_0 = u_0 + u_1 + u_2,$$

 $v_1 = u_0 + u_1 + u_3,$
 $v_2 = u_0 + u_2 + u_3,$
 $v_3 = u_1 + u_2 + u_3,$

where u_0, u_1, u_2, u_3 are message bits and v_0, v_1, v_2, v_3 are parity-check bits. Codewords are 8-tuples of the form $(v_0, v_1, v_2, v_3, u_0, u_1, u_2, u_3)$.

- (a) Find a generator matrix and a parity-check matrix for this code.
- (b) What is the minimum distance of the code? How many errors can it detect? How many errors can it correct?
- (2.)(6p.) Algebra.
 - (a) Express $x^3 + 1 \in GF(2)[x]$ as a product of binary irreducible polynomials.
 - (b) Multiply $x^2 + x + 1$ and $x^2 + x + 2$ in the ring $GF(3)[x]/(x^3 1)$.
- 3. (6p.) Construct a trellis diagram for the following convolutional encoder, decode the received word (101, 100, 001, 011, 111, 101, 111, 110) using hard-decision Viterbi decoding, and find the original message \boldsymbol{x} .