Exercises

- 3) (8p) The voltage ratio of a three-phase transformer is 3800/380 and the connection of the windings is Y-Y. Tests are performed on the transformer and the following results are obtained:
 - Open circuit test (high-voltage side open, measurements from low-voltage side): $U_{\text{o.c.}}$ = 380 V, $I_{\text{o.c.}}$ = 2.5 A, $P_{\text{o.c.}}$ = 300 W.
 - Short circuit test (low-voltage side shorted, measurements from high-voltage side): $U_{\text{s.c.}} = 260 \text{ V}$, $I_{\text{s.c.}} = 4.55 \text{ A}$, $P_{\text{s.c.}} = 645 \text{ W}$.

Determine the parameters of the equivalent circuit shown in the figure referred on the high-voltage side.

- 4) (8p) A four-pole, squirrel-cage induction motor has a frequency of f = 60 Hz and a nominal speed n = 1710 rpm. The starting torque of the motor is $T_{\text{start}} = 1.8$ p.u. Determine the maximum torque the motor can develop and the speed at which the motor develops the maximum torque. Accept that the full load (nominal) torque of the motor is $T_{\text{fl}} = 1$ p.u..
- 5) (8p) A three-phase synchronous generator has the following nominal data: S = 2 MVA, $U_1 = 11$ kV, $n_s = 1800$ rpm, $R_a = 1.5 \Omega$, $X_s = 15 \Omega$. The stator winding is connected into Y-connection. The generator is made to deliver the rated current at power factor $\cos \varphi = 0.8$ lagging.
 - a) Determine the excitation voltage E_f at the rated condition.
 - b) Determine the maximum power P_{max} the generator can supply if the field current is kept constant.