1. Charge Q is evenly distributed on the surface of a sphere with radius R. Charge density $\rho = f(r)$ outside of the sphere causes constant absolute value of the electric field. Calculate f(r).

(Hint: in spherical coordinates
$$\nabla \cdot \overline{E} = \frac{1}{r^2} \frac{d}{dr} (r^2 E)$$
, when $\overline{E} = E \overline{u}_r$.)

- 2. Calculate relative permittivity K of silicon at angular velocity $\omega = 3.8 \times 10^{15} \text{ s}^{-1}$ (equal to wavelength 500 nm) using harmonic oscillator model. The atoms in silicon are assumed as dipoles with charges +e and -e. The density and molar mass of silicon are 2.3×10^3 kgm⁻³ and 28,1 g, respectively
- 3. Electromagnetic radiation having angular velocity ω strikes perpendicularly to the surface of copper (conductivity $\sigma \gg \varepsilon \omega$). Show using Maxwell's equations that the electric field in the conductor is given by $\overline{E}(x,t) = \overline{E}_0 e^{-\alpha x} \sin(kx \omega t)$ and determine α when $\alpha \approx k$.

Hint:
$$\nabla \times \overline{B} = \mu \overline{j} + \mu \varepsilon \frac{\partial \overline{E}}{\partial t}$$
, where $\overline{j} = \sigma \overline{E}$

- 4. a) Calculate the modal density of 3-dimensional standing transversal electromagnetic waves.
 - b) Sheet has an aperture with radius 1 mm. The sheet is illuminated with plane waves having wavelength 500 nm. Calculate using Fresnel diffraction whether the area in the screen 2 m directly behind the aperture is illuminated or dark and find its intensity.

Constants:
$$\varepsilon_0 = 8,85 \cdot 10^{-12} \, \text{F/m}$$
, $\mu_0 = 4\pi \cdot 10^{-7} \, \text{H/m}$, $c = 3,00 \cdot 10^8 \, \text{m/s}$, $e = 1,60 \cdot 10^{-19} \, C$, $m_e = 9,11 \cdot 10^{-31} \, kg$, $N_A = 6,02 \cdot 10^{23} \, / \, mol$

Name, study number, study programme, course code and exam date in each paper.