- 1. A parachutist is at the time t=0 at a position z=0 and moving downwards with a velocity v_0 . In addition to the earth's gravity, there is a frictional force of $a_f = -\beta v$ ($\beta > 0$) acting on the parachutist. Calculate a) the velocity of the parachutist as a function of time (4 p) and b) the terminal velocity, *i.e.*, the velocity attained by the parachutist during a long flight (2 p).
- 2. An object is moving horizontally on the surface of the Earth with the speed of v. How large is the horizontal component of the Coriolis acceleration, a_H , if the location of the object is at the latitude of λ ? Calculate the value of a_H when $v = 280 \text{ m s}^{-1}$ and $\lambda = 60^{\circ} \text{ N}$.
- 3. A particle has a rest energy of mc^2 . a) How large must the speed of the particle be for its momentum to be mc? b) Calculate the total energy of the particle in that case.
- 4. One end of a semiconductor rod is being illuminated constantly so that the electron concentration in a steady state at the surface is n_0 . Calculate the concentration of electrons n(x) as a function of distance x from the surface. Diffusion equation taking into account the recombination of electrons is

$$\frac{\partial n}{\partial t} = D \frac{\partial^2 n}{\partial x^2} - \frac{n}{\tau} ,$$

where D is the diffusion constant of the electrons and τ is the average lifetime of the electrons.

Write your name, student number, degree programme, course code, and date of the exam in each paper.