AS-74.3115 NEURO-FUZZY Computing in Automation Exam 9.5.2008 Heikki Koivo

All questions are of equal value.

Use of books or lecture notes is not allowed.

1)

- a) Define a fuzzy set.
- b) Who is considered the inventor of fuzzy logic?

 Mention one other person that has been influential in developing basic ideas of fuzzy logic.
- c) In fuzzy logic T-norm is defined as a map $T:[0,1]\times[0,1]\to[0,1]$. Let a,b,c, and d be real numbers belonging to a closed unit interval.

T-norm satisfies the following criteria:

$$T(a,b) = T(b,a)$$
 commutativity

$$T(T(a,b),c) = T(a,T(b,c))$$
 associativity

$$T(a,b) \le T(c,d)$$
, if $a \le c$ and $b \le d$ **nondecreasing**

$$T(a,1) = T(1,a) = a$$
, $T(0,0) = 0$ **boundary**

Give an example of T-norm and show that it satisfies the above requirements.

- 2) a) Give two ways how fuzzy logic can be used in fuzzy control. Draw a block diagram of each.
 - b) Draw the basic block diagram of a fuzzy system. Explain what the task of each block is.
- 3) The figure below shows a simple two-layer perceptron network, where notation is given in the figure.
 - a) Explain how backpropagation algorithm works.
 - b) Compute the updating algorithm of the first phase of backpropagation (one layer is enough).

$$a^1 = f^1(n^1) = f^1(w^1p)$$

$$a^2 = f^2(n^2) = f^2(w^2a^1)$$

Hint: Gradient algorithm

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \left(\frac{\partial J}{\partial \mathbf{w}} \right) \Big|_{\mathbf{w}_k}$$

4). a) Suppose you have four weight vectors of unit length $\mathbf{w}^j = [w_1^j, w_2^j, w_3^j], j = 1,...,4$ as shown in the figure (left).

A new input vector \mathbf{x}^{new} is introduced (Figure on the right). Explain how competitive learning works.

- b) How does Kohonen Self-Organizing Map differ from competitive learning.
- 5) a) What are the main objectives in system monitoring? Draw a block diagram of system monitoring showing the different phases.
 - b) Explain the basic Genetic Algorithm cycle.