T-61.5130 Machine Learning and Neural Networks Examination 18th December 2008/Karhunen

You are allowed to have in the examination a collection of mathematical formulas, but not any of the teaching material. (Voit vastata tenttiin myös suomeksi.)

- 1. Answer briefly (using a few lines) to the following questions or items:
 - (a) For what purpose and where is moment term used?
 - (b) What is cross-validation?
 - (c) Which are the two main criteria for measuring non-Gaussianity?
 - (d) Explain briefly ϵ -insensitive cost function.
 - (e) Which neural network method is based on competitive learning?
 - (f) Explain briefly what is NARX model.
- 2. Let the error function be

$$\mathcal{E}(\mathbf{w}) = w_1^2 + 10w_2^2$$

where w_1 and w_2 are the components of the two-dimensional parameter vector \mathbf{w} . Find the minimum value of $\mathcal{E}(\mathbf{w})$ by applying the steepest descent method. Use $\mathbf{w}(0) = [1,1]^T$ as an initial value for the parameter vector and the following constant values for the learning rate:

- (a) $\alpha = 0.04$
- (b) $\alpha = 0.1$
- (c) $\alpha = 0.2$
- (d) What is the condition for the convergence of this method?
- 3. Consider solving the XOR problem using an RBF network. In the XOR problem the desired output is 0 for the vectors $(1,1)^T$ and $(0,0)^T$ belonging to the first class. For the vectors $(1,0)^T$ and $(0,1)^T$ belonging to the second class the desired output is 1. Let us construct a classifier using the basic RBF network, where the radial basis functions are chosen to be multiquadratic type functions

$$\varphi(\parallel \mathbf{x} - \mathbf{x}_i \parallel) = [\parallel \mathbf{x} - \mathbf{x}_i \parallel^2 + 3]^{1/2}$$

where \mathbf{x}_i is the *i*:th training vector. Present how the solution is calculated, and form the equations needed for the solution. Note: you do not need to solve these equations numerically.

4. Consider n zero mean source signals s_i , which have been collected to the vector $\mathbf{s} = (s_1, s_2, \dots, s_n)^T$. Assume that the joint distribution of the sources is n variables multivariate Gaussian distribution

$$p(\mathbf{s}) = (2\pi)^{-n/2} (\det \mathbf{C})^{-1/2} \exp \left\{ -\frac{1}{2} \mathbf{s}^T \mathbf{C}^{-1} \mathbf{s} \right\}$$

Here $\mathbf{C} = \mathrm{E}\{\mathbf{s}\mathbf{s}^T\}$ is the covariance matrix of the vector \mathbf{s} and det means determinant. Assume that the source signals s_1, s_2, \ldots, s_n are mutually uncorrelated. Show that they are mutually statistically independent.

Does this properly hold for other than Gaussian distributed source signals? How about the reverse property: are statistically independent source signals source signals mutually uncorrelated?