[Answer in Finnish, Swedish or English]

- 1. Explain briefly:
 - A) Plasma frequency
 - B) Surface plasmon polariton
 - C) Homogeneous and inhomogeneous line broadening
 - D) Rayleigh scattering
- 2. Two stars are separated by an angle of $1 \cdot 10^{-6}$ rad. The light from both stars includes wavelengths of $\lambda_1 = 577$ nm and $\lambda_2 = 579$ nm.
 - a) How large a telescope lens is needed to spatially resolve the two stars?
 - b) What kind of a grating is needed to spectrally separate the wavelengths λ_1 and λ_2 from each other?
- 3. In the atomic oscillator model, the forced oscillations of an electron in an atom caused by the electric field of a light wave are described by the equation of motion for the electron

$$\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + \omega_0^2 x = -eE/m ,$$

where γ is the damping factor, ω_0 is the resonance frequency of the oscillator, e and m are the electron charge and mass, respectively, and $E = E(t) = E_0 e^{-i\omega t}$ is the optical field.

- a) Solve this equation by using a proper trial for x(t).
- b) Calculate the polarization induced in the material.
- c) Calculate the phase difference between the polarization of the material and the optical field at very high and very small frequencies ω , and at the resonant frequency $\omega = \omega_0$.
- 4. a) What is the difference between Fraunhofer and Fresnel diffractions?
 - b) Draw the Fraunhofer diffraction pattern from a single slit (width a) and from a double slit (widths a, separation d) observed on a screen. Point out the distinguishing features of each pattern.
- 5. a) Why is it impossible to achieve population inversion in a two-level system under stationary conditions?
 - b) Explain what is meant by longitudinal and transversal mode structure in a laser.